Bordism Invariants of Colored Links and Topologically Protected Tricolorings
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Annala, Toni | en_US |
dc.contributor.author | Rajamäki, Hermanni | en_US |
dc.contributor.author | Möttönen, Mikko | en_US |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.groupauthor | Quantum Computing and Devices | en |
dc.contributor.groupauthor | Centre of Excellence in Quantum Technology, QTF | en |
dc.contributor.organization | Centre of Excellence in Quantum Technology, QTF | en_US |
dc.date.accessioned | 2024-08-06T08:00:25Z | |
dc.date.available | 2024-08-06T08:00:25Z | |
dc.date.embargo | info:eu-repo/date/embargoEnd/2025-07-01 | en_US |
dc.date.issued | 2024-07 | en_US |
dc.description | Publisher Copyright: © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. | openaire: EC/H2020/681311/EU//QUESS | |
dc.description.abstract | We construct invariants of colored links using equivariant bordism groups of Conner and Floyd. We employ this bordism invariant to find the first examples of topological vortex knots, the knot structure of which is protected from decaying via topologically allowed local surgeries, i.e., by reconnections and strand crossings permitted by the topology of the vortex-supporting medium. Moreover, we show that, up to the aforementioned local surgeries, each tricolored link either decays into unlinked simple loops, or can be transformed into either a left-handed or a right-handed tricolored trefoil knot. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 17 | |
dc.identifier.citation | Annala, T, Rajamäki, H & Möttönen, M 2024, 'Bordism Invariants of Colored Links and Topologically Protected Tricolorings', Communications in Mathematical Physics, vol. 405, no. 7, 169, pp. 1-17. https://doi.org/10.1007/s00220-024-05058-8 | en |
dc.identifier.doi | 10.1007/s00220-024-05058-8 | en_US |
dc.identifier.issn | 0010-3616 | |
dc.identifier.issn | 1432-0916 | |
dc.identifier.other | PURE UUID: dd83d945-d5e1-4e78-ba8c-238e7f3d8ae0 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/dd83d945-d5e1-4e78-ba8c-238e7f3d8ae0 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85197213835&partnerID=8YFLogxK | |
dc.identifier.other | PURE LINK: https://arxiv.org/abs/2301.09532 | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/129748 | |
dc.identifier.urn | URN:NBN:fi:aalto-202408065322 | |
dc.language.iso | en | en |
dc.publisher | Springer | |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/681311/EU//QUESS | en_US |
dc.relation.ispartofseries | Communications in Mathematical Physics | en |
dc.relation.ispartofseries | Volume 405, issue 7, pp. 1-17 | en |
dc.rights | embargoedAccess | en |
dc.title | Bordism Invariants of Colored Links and Topologically Protected Tricolorings | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |