Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2019-06-17
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
10257-10265
10257-10265
Series
ACS Sustainable Chemistry and Engineering, Volume 7, issue 12
Abstract
Biobased cryogel membranes were applied as electrolyte holders in dye solar cells (DSC) while facilitating carrier transport during operation. They also improved device performance and stability. For this purpose, cellulose nanofibers (CNF), TEMPO-oxidized CNF (TOCNF), bacterial cellulose (BC), and chitin nanofibers (ChNF) were investigated. The proposed materials and protocols for incorporating the electrolyte, via simple casting, avoided the typical problems associated with injection of the electrolyte through filling holes, a major difficulty especially in manufacturing large area cells. Owing to the fact that cryogel membranes did not require any orifice for injection, they were effective in minimizing leakage and in retaining liquid electrolyte. The results indicated the reduction of performance losses compared to conventional electrolyte filling, likely due to the better spatial distribution of electrolyte. DSCs based on BC cryogels had an initially higher performance and similar stability compared to those of the reference cells. When compared to reference cells, CNF and ChNF cryogels produced higher initial performance, but they underwent a faster degradation. The difference in stability was attributed to the effect of residual components, including lignin in CNF and proteins in ChNF, as demonstrated in bleaching experiments. TOCNF indicated a relatively poor performance, most likely because of residual aldehydes. Overall, we offer a comprehensive evaluation based on current-voltage (IV) profiles under simulated sunlight, incident photon-to-charge carrier efficiency (IPCE), electrochemical impedance spectroscopy (EIS), and color image processing, together with accelerated DSC stability tests, to unveil the effects of new membrane-based assembly. Our results give guidelines for future developments related in particular to the effects of the tested biomaterials on device stability.Description
Keywords
biomaterial, cellulose, membrane, photovoltaics, upscaling
Other note
Citation
Poskela, A, Miettunen, K, Borghei, M, Vapaavuori, J, Greca, L G, Lehtonen, J, Solin, K, Ago, M, Lund, P D & Rojas, O J 2019, ' Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells ', ACS Sustainable Chemistry and Engineering, vol. 7, no. 12, pp. 10257-10265 . https://doi.org/10.1021/acssuschemeng.8b06501