Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2019-06-17

Major/Subject

Mcode

Degree programme

Language

en

Pages

9
10257-10265

Series

ACS Sustainable Chemistry and Engineering, Volume 7, issue 12

Abstract

Biobased cryogel membranes were applied as electrolyte holders in dye solar cells (DSC) while facilitating carrier transport during operation. They also improved device performance and stability. For this purpose, cellulose nanofibers (CNF), TEMPO-oxidized CNF (TOCNF), bacterial cellulose (BC), and chitin nanofibers (ChNF) were investigated. The proposed materials and protocols for incorporating the electrolyte, via simple casting, avoided the typical problems associated with injection of the electrolyte through filling holes, a major difficulty especially in manufacturing large area cells. Owing to the fact that cryogel membranes did not require any orifice for injection, they were effective in minimizing leakage and in retaining liquid electrolyte. The results indicated the reduction of performance losses compared to conventional electrolyte filling, likely due to the better spatial distribution of electrolyte. DSCs based on BC cryogels had an initially higher performance and similar stability compared to those of the reference cells. When compared to reference cells, CNF and ChNF cryogels produced higher initial performance, but they underwent a faster degradation. The difference in stability was attributed to the effect of residual components, including lignin in CNF and proteins in ChNF, as demonstrated in bleaching experiments. TOCNF indicated a relatively poor performance, most likely because of residual aldehydes. Overall, we offer a comprehensive evaluation based on current-voltage (IV) profiles under simulated sunlight, incident photon-to-charge carrier efficiency (IPCE), electrochemical impedance spectroscopy (EIS), and color image processing, together with accelerated DSC stability tests, to unveil the effects of new membrane-based assembly. Our results give guidelines for future developments related in particular to the effects of the tested biomaterials on device stability.

Description

Keywords

biomaterial, cellulose, membrane, photovoltaics, upscaling

Other note

Citation

Poskela, A, Miettunen, K, Borghei, M, Vapaavuori, J, Greca, L G, Lehtonen, J, Solin, K, Ago, M, Lund, P D & Rojas, O J 2019, ' Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells ', ACS Sustainable Chemistry and Engineering, vol. 7, no. 12, pp. 10257-10265 . https://doi.org/10.1021/acssuschemeng.8b06501