The complex structure of Fomes fomentarius represents an architectural design for high-performance ultralightweight materials

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPylkkänen, Roberten_US
dc.contributor.authorWerner, Danielen_US
dc.contributor.authorBishoyi, Ajiten_US
dc.contributor.authorWeil, Dominiken_US
dc.contributor.authorScoppola, Ernestoen_US
dc.contributor.authorWagermaier, Wolfgangen_US
dc.contributor.authorSafeer, Adilen_US
dc.contributor.authorBahri, Salimaen_US
dc.contributor.authorBaldus, Marcen_US
dc.contributor.authorPaananen, Arjaen_US
dc.contributor.authorPenttilä, Merjaen_US
dc.contributor.authorSzilvay, Géza R.en_US
dc.contributor.authorMohammadi, Pezhmanen_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorSynthetic Biologyen
dc.contributor.organizationMax Planck Institute of Colloids and Interfacesen_US
dc.contributor.organizationUtrecht Universityen_US
dc.contributor.organizationKLA-Tencor GmbHen_US
dc.contributor.organizationVTT Technical Research Centre of Finlanden_US
dc.date.accessioned2023-03-15T07:08:48Z
dc.date.available2023-03-15T07:08:48Z
dc.date.issued2023-02-22en_US
dc.descriptionWe thank C. Li from the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany, for help during synchrotron measurements at the μSpot beamline at BESSY at the Helmholtz-Zentrum Berlin für Materialien und Energie in Berlin, Germany. We acknowledge the provision of facilities and technical support by Aalto University at the OtaNano Nanomicroscopy Center (Aalto-NMC). This work was supported by the Academy of Finland project 348628, the Jenny and Antti Wihuri Foundation (Centre for Young Synbio Scientists), and the Academy of Finland Center of Excellence Program (2022–2029) in Life-Inspired Hybrid Materials (LIBER) project number 346106, and by internal funding from the VTT Technical Research Center of Finland Ltd. We also acknowledge the Dutch Research Council (NWO, domain Applied and Engineering Sciences: MYCOAT project number 18425) and the Horizon 2020 programs of the European Union (FUNGAR; project 58132 and iNEXT-Discovery, project 871037) for NMR studies. Furthermore, the high-field NMR experiments were supported by uNMR-NL, the National Roadmap Large-Scale NMR Facility of the Netherlands (NWO grant 184.032.207), and the uNMR-NL grid (NWO grant 184.035.002).
dc.description.abstractHigh strength, hardness, and fracture toughness are mechanical properties that are not commonly associated with the fleshy body of a fungus. Here, we show with detailed structural, chemical, and mechanical characterization that Fomes fomentarius is an exception, and its architectural design is a source of inspiration for an emerging class of ultralightweight high-performance materials. Our findings reveal that F. fomentarius is a functionally graded material with three distinct layers that undergo multiscale hierarchical self-assembly. Mycelium is the primary component in all layers. However, in each layer, mycelium exhibits a very distinct microstructure with unique preferential orientation, aspect ratio, density, and branch length. We also show that an extracellular matrix acts as a reinforcing adhesive that differs in each layer in terms of quantity, polymeric content, and interconnectivity. These findings demonstrate how the synergistic interplay of the aforementioned features results in distinct mechanical properties for each layer.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationPylkkänen, R, Werner, D, Bishoyi, A, Weil, D, Scoppola, E, Wagermaier, W, Safeer, A, Bahri, S, Baldus, M, Paananen, A, Penttilä, M, Szilvay, G R & Mohammadi, P 2023, ' The complex structure of Fomes fomentarius represents an architectural design for high-performance ultralightweight materials ', Science Advances, vol. 9, no. 8, eade5417 . https://doi.org/10.1126/sciadv.ade5417en
dc.identifier.doi10.1126/sciadv.ade5417en_US
dc.identifier.issn2375-2548
dc.identifier.otherPURE UUID: 151e0ada-069a-4940-92c2-9370e08fa5b9en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/151e0ada-069a-4940-92c2-9370e08fa5b9en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85148548796&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/102596958/CHEM_Pylkkanen_et_al_The_complex_structure_2023_Science_Advances.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/120071
dc.identifier.urnURN:NBN:fi:aalto-202303152397
dc.language.isoenen
dc.publisherAmerican Association for the Advancement of Science
dc.relation.ispartofseriesScience Advancesen
dc.relation.ispartofseriesVolume 9, issue 8en
dc.rightsopenAccessen
dc.titleThe complex structure of Fomes fomentarius represents an architectural design for high-performance ultralightweight materialsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files