A robust pipeline for visual network exploration of communication data in small teams

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorHolme, Petter
dc.contributor.authorGoh, Beverley
dc.contributor.schoolSähkötekniikan korkeakoulufi
dc.contributor.supervisorJäntti, Riku
dc.date.accessioned2023-08-27T17:06:57Z
dc.date.available2023-08-27T17:06:57Z
dc.date.issued2023-08-21
dc.description.abstractExisting literature is rife with varying methods of modelling temporal networks, oftentimes, with only a single method touted as the superior means to visualising the network. In this contribution, I propose a multi-faceted visualisation approach, capitalising on different layout types to accentuate different characteristics of the given small group interaction. This is incorporated into a holistic framework that encompasses all elements of procuring an apt visualisation for the characterisation of small group interactions. Small teams have been selected for the evaluation process given the nature of many tasks involving smaller groups of individuals for more efficacious dissemination of information and discourse. The size of the team also implicates the visualisation tools used which will be discussed in the following chapters.en
dc.format.extent74 + 6
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/122792
dc.identifier.urnURN:NBN:fi:aalto-202308275133
dc.language.isoenen
dc.locationP1fi
dc.programmeCCIS - Master’s Programme in Computer, Communication and Information Sciences (TS2013)fi
dc.programme.majorCommunications Engineeringfi
dc.programme.mcodeELEC3029fi
dc.subject.keyworddata visualisationen
dc.subject.keywordtemporal networksen
dc.subject.keywordnetwork scienceen
dc.subject.keywordcomputational social sciencesen
dc.subject.keywordcomplex systemsen
dc.titleA robust pipeline for visual network exploration of communication data in small teamsen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.ontasotDiplomityöfi
local.aalto.electroniconlyyes
local.aalto.openaccessyes

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
master_Goh_Beverley_2023.pdf
Size:
3.14 MB
Format:
Adobe Portable Document Format