Review of rhenium extraction and recycling technologies from primary and secondary resources
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A2 Katsausartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021-01-15
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
Minerals Engineering, Volume 161
Abstract
Rhenium is a scarce and highly important metal, which is widely used in high-temperature superalloys and platinum–rhenium catalysts due to its unique physicochemical properties. The substitution of rhenium in its applications is very limited, and there is no suitable substitute without losing essential performance. Furthermore, global extractable primary rhenium resources are predicted to deplete within 130 years. In this paper, rhenium extraction and recycling technologies from primary and secondary resources are critically classified and reviewed. Rhenium is primarily produced as a by-product in molybdenum, copper, lead and uranium production from the concentrates and ores. Rhenium is extracted from roasting fume and dust, leaching residue, and aqueous solution to produce a rhenium bearing solution. Subsequently, rhenium rich solution is generated by separation with solvent extraction, ion exchange, adsorption, membrane techniques or chemical precipitation. Finally, rhenium is produced via crystallization and reduction steps. Recycling rhenium from spent alloys and catalysts is a multi-step process combining pyrometallurgical and hydrometallurgical techniques, where its separation and the subsequent steps are similar to that of extracting rhenium from primary resources. The main challenges in rhenium extraction and recycling are the enrichment of rhenium in the production and the collection and classification of spent rhenium scrap, to identify suitable processes to recover the rhenium with a high recovery. This paper contributes to better understanding the rhenium extraction and recycling processes and enhances sustainability of rhenium production.Description
Keywords
Extraction technology, Primary resource, Recycling, Separation, Spent alloys and catalysts
Other note
Citation
Shen , L , Tesfaye , F , Li , X , Lindberg , D & Taskinen , P 2021 , ' Review of rhenium extraction and recycling technologies from primary and secondary resources ' , Minerals Engineering , vol. 161 , 106719 . https://doi.org/10.1016/j.mineng.2020.106719