An electron turnstile for frequency-to-power conversion

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMarín-Suárez, Marcoen_US
dc.contributor.authorPeltonen, Joonas T.en_US
dc.contributor.authorGolubev, Dmitry S.en_US
dc.contributor.authorPekola, Jukka P.en_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorQuantum Phenomena and Devicesen
dc.contributor.groupauthorCentre of Excellence in Quantum Technology, QTFen
dc.date.accessioned2022-02-02T07:49:47Z
dc.date.available2022-02-02T07:49:47Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-07-20en_US
dc.date.issued2022-03en_US
dc.description| openaire: EC/H2020/742559/EU//SQH
dc.description.abstractSingle-electron transport relates an operation frequency f to the emitted current I through the electron charge e as I = ef (refs. 1–5). Similarly, direct frequency-to-power conversion (FPC) links both quantities through a known energy. FPC is a natural candidate for a power standard resorting to the most basic definition of the watt: energy emitted per unit of time. The energy is traceable to Planck’s constant and the time is in turn traceable to the unperturbed ground state hyperfine transition frequency of the caesium 133 atom. Hence, FPC comprises a simple and elegant way to realize the watt6. In this spirit, single-photon emission7,8 and detection9 at known rates have been proposed as radiometric standards and experimentally realized10–14. However, power standards are so far only traceable to electrical units, that is, to the volt and the ohm6,15–17. In this Letter, we demonstrate an alternative proposal based on solid-state direct FPC using a hybrid single-electron transistor (SET). The SET injects n (integer) quasi-particles (QPs) per cycle into the two superconducting leads with discrete energies close to their superconducting gap Δ, even at zero source-drain voltage. Furthermore, the application of a bias voltage can vary the distribution of the power among the two leads, allowing for an almost equal power injection nΔf into the two. While in single-electron transport current is related to a fixed universal constant (e), in our approach Δ is a material-dependent quantity. We estimate that under optimized conditions errors can be well below 1%.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMarín-Suárez, M, Peltonen, J T, Golubev, D S & Pekola, J P 2022, 'An electron turnstile for frequency-to-power conversion', Nature Nanotechnology, vol. 17, no. 3, pp. 239-243. https://doi.org/10.1038/s41565-021-01053-5en
dc.identifier.doi10.1038/s41565-021-01053-5en_US
dc.identifier.issn1748-3387
dc.identifier.issn1748-3395
dc.identifier.otherPURE UUID: 0a40ce72-bfd3-4c29-96f5-4080daf72f43en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0a40ce72-bfd3-4c29-96f5-4080daf72f43en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85123185016&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/78902429/SCI_Marin_Suares_An_electron_turnstile_for_frequency_to_power_conversion.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/112730
dc.identifier.urnURN:NBN:fi:aalto-202202021627
dc.language.isoenen
dc.publisherNature Publishing Group
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/742559/EU//SQHen_US
dc.relation.ispartofseriesNature Nanotechnologyen
dc.relation.ispartofseriesVolume 17, issue 3, pp. 239-243en
dc.rightsopenAccessen
dc.titleAn electron turnstile for frequency-to-power conversionen
dc.typeLetterfi
dc.type.versionacceptedVersion

Files