Measurement noise model for depth camera-based people tracking

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKorkalo, Ottoen_US
dc.contributor.authorTakala, Tapioen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Human-Computer Interaction and Design (HCID) - Research areaen
dc.contributor.groupauthorTakala Tapio groupen
dc.date.accessioned2021-08-04T06:38:54Z
dc.date.available2021-08-04T06:38:54Z
dc.date.issued2021-07-01en_US
dc.descriptionFunding Information: VTT self-funded. Acknowledgments: The authors would like to thank Paul Kemppi at VTT Technical Research Centre of Finland for their help with the mobile robot, and Petri Honkamaa at VTT Technical Research Centre of Finland for the fruitful discussions and their help in implementation of the autocalibration method. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
dc.description.abstractDepth cameras are widely used in people tracking applications. They typically suffer from significant range measurement noise, which causes uncertainty in the detections made of the people. The data fusion, state estimation and data association tasks require that the measurement uncertainty is modelled, especially in multi-sensor systems. Measurement noise models for different kinds of depth sensors have been proposed, however, the existing approaches require manual calibration procedures which can be impractical to conduct in real-life scenarios. In this paper, we present a new measurement noise model for depth camera-based people tracking. In our tracking solution, we utilise the so-called plan-view approach, where the 3D measurements are transformed to the floor plane, and the tracking problem is solved in 2D. We directly model the measurement noise in the plan-view domain, and the errors that originate from the imaging process and the geometric transformations of the 3D data are combined. We also present a method for directly defining the noise models from the observations. Together with our depth sensor network self-calibration routine, the approach allows fast and practical deployment of depth-based people tracking systems.en
dc.description.versionPeer revieweden
dc.format.extent20
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKorkalo, O & Takala, T 2021, 'Measurement noise model for depth camera-based people tracking', Sensors, vol. 21, no. 13, 4488. https://doi.org/10.3390/s21134488en
dc.identifier.doi10.3390/s21134488en_US
dc.identifier.issn1424-8220
dc.identifier.otherPURE UUID: 17c3f442-efc8-4f21-a640-bd031d682d38en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/17c3f442-efc8-4f21-a640-bd031d682d38en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85108897769&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/65508428/Measurement_Noise_Model_for_Depth_Camera_Based_People_Tracking.sensors_21_04488_v3_1.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/108837
dc.identifier.urnURN:NBN:fi:aalto-202108048081
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesSensorsen
dc.relation.ispartofseriesVolume 21, issue 13en
dc.rightsopenAccessen
dc.subject.keywordData fusionen_US
dc.subject.keywordDepth camerasen_US
dc.subject.keywordMeasurement noise modelsen_US
dc.subject.keywordMultiple-view trackingen_US
dc.subject.keywordPeople trackingen_US
dc.titleMeasurement noise model for depth camera-based people trackingen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files