A lightweight generative model for interpretable subject-level prediction

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMauri, Chiara
dc.contributor.authorCerri, Stefano
dc.contributor.authorPuonti, Oula
dc.contributor.authorMühlau, Mark
dc.contributor.authorVan Leemput, Koen
dc.contributor.departmentDepartment of Neuroscience and Biomedical Engineeringen
dc.contributor.organizationDanmarks Tekniske Universitet
dc.contributor.organizationHarvard Medical School
dc.contributor.organizationUniversity of Copenhagen
dc.contributor.organizationTechnical University of Munich
dc.date.accessioned2025-01-22T06:58:58Z
dc.date.available2025-01-22T06:58:58Z
dc.date.issued2025-04
dc.descriptionPublisher Copyright: © 2024
dc.description.abstractRecent years have seen a growing interest in methods for predicting an unknown variable of interest, such as a subject's diagnosis, from medical images depicting its anatomical-functional effects. Methods based on discriminative modeling excel at making accurate predictions, but are challenged in their ability to explain their decisions in anatomically meaningful terms. In this paper, we propose a simple technique for single-subject prediction that is inherently interpretable. It augments the generative models used in classical human brain mapping techniques, in which the underlying cause–effect relations can be encoded, with a multivariate noise model that captures dominant spatial correlations. Experiments demonstrate that the resulting model can be efficiently inverted to make accurate subject-level predictions, while at the same time offering intuitive visual explanations of its inner workings. The method is easy to use: training is fast for typical training set sizes, and only a single hyperparameter needs to be set by the user. Our code is available at https://github.com/chiara-mauri/Interpretable-subject-level-prediction.en
dc.description.versionPeer revieweden
dc.format.extent18
dc.format.mimetypeapplication/pdf
dc.identifier.citationMauri, C, Cerri, S, Puonti, O, Mühlau, M & Van Leemput, K 2025, 'A lightweight generative model for interpretable subject-level prediction', Medical Image Analysis, vol. 101, 103436, pp. 1-18. https://doi.org/10.1016/j.media.2024.103436en
dc.identifier.doi10.1016/j.media.2024.103436
dc.identifier.issn1361-8415
dc.identifier.issn1361-8423
dc.identifier.otherPURE UUID: bb40ccf3-03da-4644-9f43-bdd75d736166
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/bb40ccf3-03da-4644-9f43-bdd75d736166
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85214328366&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/171095373/A_lightweight_generative_model_for_interpretable_subject-level_prediction.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/133267
dc.identifier.urnURN:NBN:fi:aalto-202501221553
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesMedical Image Analysisen
dc.relation.ispartofseriesVolume 101, pp. 1-18en
dc.rightsopenAccessen
dc.rightsCC BY-NC-ND
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordBrain age
dc.subject.keywordExplainable AI
dc.subject.keywordGenerative models
dc.subject.keywordImage-based prediction
dc.titleA lightweight generative model for interpretable subject-level predictionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files