High performance ceramic nanocomposite fuel cells utilizing LiNiCuZn-oxide anode based on slurry method
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Asghar, M. I. | en_US |
dc.contributor.author | Jouttijärvi, S. | en_US |
dc.contributor.author | Lund, P. D. | en_US |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.groupauthor | New Energy Technologies | en |
dc.date.accessioned | 2018-10-16T08:55:19Z | |
dc.date.available | 2018-10-16T08:55:19Z | |
dc.date.issued | 2018-07 | en_US |
dc.description.abstract | A multi-oxide material LiNiCuZn-oxide was prepared through a slurry method as an anode for ceramic nanocomposite fuel cell (CNFC). The CNFCs using this anode material, LSCF as cathode material and a composite electrolyte consisting of CaSm co-doped CeO2 and (NaLiK)2CO3 produced ∼1.03 W/cm2 at 550 °C due to efficient reaction kinetics at the electrodes and high ionic transport in the nanocomposite electrolyte. The electrochemical impedance spectroscopy revealed low ionic transport losses (0.238 Ω cm2) and low polarization losses (0.124 Ω cm2) at the electrodes. The SEM measurements revealed the porous microstructures of the composite materials at electrode and the dense mixture of CaSm co-doped CeO2 and (NaLiK)2CO3. The Brunauer-Emmett-Teller (BET) analysis revealed high surface areas, 4.1 m2/g and 3.8 m2/g, of the anode and cathode respectively. This study provides a promising material for high performance CNFCs. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 12797-12802 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Asghar, M I, Jouttijärvi, S & Lund, P D 2018, ' High performance ceramic nanocomposite fuel cells utilizing LiNiCuZn-oxide anode based on slurry method ', International Journal of Hydrogen Energy, vol. 43, no. 28, pp. 12797-12802 . https://doi.org/10.1016/j.ijhydene.2018.03.232 | en |
dc.identifier.doi | 10.1016/j.ijhydene.2018.03.232 | en_US |
dc.identifier.issn | 0360-3199 | |
dc.identifier.issn | 1879-3487 | |
dc.identifier.other | PURE UUID: 82b2dcb2-5ae4-4274-bc3d-3fa3bda9c03b | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/82b2dcb2-5ae4-4274-bc3d-3fa3bda9c03b | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85046127430&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/28375898/1_s2.0_S0360319918311650_main.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/34294 | |
dc.identifier.urn | URN:NBN:fi:aalto-201810165371 | |
dc.language.iso | en | en |
dc.relation.ispartofseries | International Journal of Hydrogen Energy | en |
dc.relation.ispartofseries | Volume 43, issue 28 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Ceramic | en_US |
dc.subject.keyword | Conductivity | en_US |
dc.subject.keyword | Fuel cell | en_US |
dc.subject.keyword | Multi-oxide | en_US |
dc.subject.keyword | Nanocomposite | en_US |
dc.subject.keyword | Synthesis | en_US |
dc.title | High performance ceramic nanocomposite fuel cells utilizing LiNiCuZn-oxide anode based on slurry method | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |