Self-transport and self-alignment of microchips using microscopic rain
Loading...
Access rights
© 2015 Nature Publishing Group. This is the accepted version of the following article: Chang, Bo & Shah, Ali & Zhou, Quan & Ras, Robin & Hjort, Klas. 2015. Self-transport and self-alignment of microchips using microscopic rain. Scientific Reports 5. 14966/1-8. DOI: 10.1038/srep14966, which has been published in final form at http://www.nature.com/articles/srep14966.
Final published version
URL
Journal Title
Journal ISSN
Volume Title
School of Electrical Engineering |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2015
Major/Subject
Mcode
Degree programme
Language
en
Pages
14966/1-8
Series
Scientific Reports 5
Abstract
Alignment of microchips with receptors is an important process step in the construction of integrated micro- and nanosystems for emerging technologies, and facilitating alignment by spontaneous self-assembly processes is highly desired. Previously, capillary self-alignment of microchips driven by surface tension effects on patterned surfaces has been reported, where it was essential for microchips to have sufficient overlap with receptor sites. Here we demonstrate for the first time capillary self-transport and self-alignment of microchips, where microchips are initially placed outside the corresponding receptor sites and can be self-transported by capillary force to the receptor sites followed by self-alignment. The surface consists of hydrophilic silicon receptor sites surrounded by superhydrophobic black silicon. Rain-induced microscopic droplets are used to form the meniscus for the self-transport and self-alignment. The boundary conditions for the self-transport have been explored by modeling and confirmed experimentally. The maximum permitted gap between a microchip and a receptor site is determined by the volume of the liquid and by the wetting contrast between receptor site and substrate. Microscopic rain applied on hydrophilic-superhydrophobic patterned surfaces greatly improves the capability, reliability and error-tolerance of the process, avoiding the need for accurate initial placement of microchips, and thereby greatly simplifying the alignment process.Description
Keywords
microassembly, self-alignment, self-transport, self-assembly
Other note
Citation
Chang, Bo & Shah, Ali & Zhou, Quan & Ras, Robin & Hjort, Klas. 2015. Self-transport and self-alignment of microchips using microscopic rain. Scientific Reports 5. 14966/1-8. DOI: 10.1038/srep14966.