Existence and nonexistence results for anisotropic p-Laplace equation with singular nonlinearities

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2020-08-05
Major/Subject
Mcode
Degree programme
Language
en
Pages
21
2055-2075
Series
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, Volume 66, issue 12
Abstract
Let pi≥ 2 and consider the following anisotropic p-Laplace equation −∑Ni=1∂∂xi(∣∣∂u∂xi∣∣pi−2∂u∂xi)=g(x)f(u),u>0 in Ω. Under suitable hypothesis on the weight function g we present an existence result for f(u)=e1u in a bounded smooth domain Ω and nonexistence results for f(u)=−e1u or −(u−δ+u−γ), δ,γ>0 with Ω=RN respectively.
Description
Keywords
T, Bartsch, Anisotropicp-Laplacian, existence, nonexistence, stable solution, STABLE-SOLUTIONS
Other note
Citation
Garain , P 2020 , ' Existence and nonexistence results for anisotropic p-Laplace equation with singular nonlinearities ' , Complex Variables and Elliptic Equations , vol. 66 , no. 12 , pp. 2055-2075 . https://doi.org/10.1080/17476933.2020.1801655