Perpetual battery life for Machine to Machine communication devices with cellular access
No Thumbnail Available
URL
Journal Title
Journal ISSN
Volume Title
Sähkötekniikan korkeakoulu |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2013-04-22
Major/Subject
Radio Communications
Mcode
S3019
Degree programme
TLT - Master’s Programme in Communications Engineering
Language
en
Pages
62 + 4
Series
Abstract
The advent of Machine to Machine (M2M) communication has opened up new avenues for the mobile operators and also for the equipment vendors. The ecosystem of communication is fast emerging in to a new dimension. However to make the new realm of M2M communication feasible, there is a need to reduce the power consumption of these devices. Research is being carried out in several directions to reduce the power consumption. Research work has been done to develop new network topologies, architecture and also improve the electronics and embedded systems to reduce power consumption. This thesis explores the third direction which is concerned with developing a prototype using the existing electronics and cellular access techniques to explore the possibility of improving power consumption. This is concerned also with using energy harvesting for recharging the battery supplies. The development of the prototype is aimed at using a CPU, cellular access device and rechargeable power system to develop M2M device with battery time in terms of years. We will be using the concept of sleeping devices to enable infinite battery times. The aim of the research is to find sleep times which may lead to sufficiently longer battery times and hence provide a prototype of M2M device with energy harvesting solution capable to have independent power source for years.Description
Supervisor
Hämäläinen, JyriThesis advisor
Arkko, JariKeywords
M2M, low power, cellular access, GSM, GPRS, colar panel, LTE, solar power, energy harvesting, perpetual battery times