A systematic procedure for analysis and design of energy systems
No Thumbnail Available
URL
Journal Title
Journal ISSN
Volume Title
Doctoral thesis (article-based)
Checking the digitized thesis and permission for publishing
Instructions for the author
Instructions for the author
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2006-04-28
Major/Subject
Mcode
Degree programme
Language
en
Pages
68, [74]
Series
TKK dissertations, 27
Abstract
The new re-regulated markets for electricity, stricter environmental policies and regulations, especially regarding greenhouse gases, form a new operating environment for energy systems. The new environment requires systems that are cost-efficient and have more efficient utilisation of energy with a low negative environmental impact. This can only be achieved with efficient tools for analysing and designing current and future energy systems. The objective of this work is to present a systematic procedure for analysis and design of energy systems. The procedure utilises simulation modelling, experimental design and regression models and mathematical programming. The procedure is able to simplify large problems so that they can be efficiently solved, but still preserve sufficient amount of details so that the objective of the analysis or design can be fulfilled. The main advantage of the methodology is that it can reduce the size of the problems in a way that is more flexible than existing methodologies using mathematical programming. This is important, since it can efficiently reduce the complexity of the problem, and can thus be used to analyse and design complex energy systems with respect to several objectives. In this respect the procedure can be seen as a valuable addition to the existing methodologies.Description
Keywords
energy systems, MINLP modelling, simulation, experimental design
Other note
Parts
- Tveit, T.-M., A simulation model of a sulphuric acid production process as an integrated part of an energy system, Simulation Modelling Practice and Theory, 11, 7-8 (2003), 585-596. [article1.pdf] © 2003 Elsevier Science. By permission.
- Tveit, T.-M., A methodology for improving large scale thermal energy systems, Applied Thermal Engineering, 24, 4 (2004), 515-524. [article2.pdf] © 2004 Elsevier Science. By permission.
- Tveit, T.-M., Aaltola, J., Laukkanen, T., Laihanen, M., and Fogelholm, C.-J., A framework for local and regional energy system integration between industry and municipalities–Case study UPM-Kymmene Kaukas, Energy, 31, 12 (2006), 1826-1839. [article3.pdf] © 2006 Elsevier Science. By permission.
- Tveit, T.-M., Experimental design methods and flowsheet synthesis of energy systems, Applied Thermal Engineering, 25, 2-3 (2005), 283-293. [article4.pdf] © 2005 Elsevier Science. By permission.
- Tveit, T.-M., and Fogelholm, C.-J., Multi-period steam turbine network optimisation. Part I: Simulation based regression models and an evolutionary algorithm for finding D-optimal designs, Applied Thermal Engineering, 26, 10 (2006), 993-1000. [article5.pdf] © 2006 Elsevier Science. By permission.
- Tveit, T.-M., and Fogelholm, C.-J., Multi-period steam turbine network optimisation. Part II: Development of a multi-period MINLP model of a utility system, Applied Thermal Engineering, 26, 14-15 (2006), 1730-1736. [article6.pdf] © 2006 Elsevier Science. By permission.