Nonlinear Model Learning for Compensation and Feedforward Control of Real-World Hydraulic Actuators Using Gaussian Processes

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTaheri, Abdolrezaen_US
dc.contributor.authorGustafsson, Pelleen_US
dc.contributor.authorRosth, Marcusen_US
dc.contributor.authorGhabcheloo, Rezaen_US
dc.contributor.authorPajarinen, Jonien_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorRobot Learningen
dc.contributor.organizationHIABen_US
dc.contributor.organizationTampere Universityen_US
dc.date.accessioned2022-08-17T09:37:48Z
dc.date.available2022-08-17T09:37:48Z
dc.date.issued2022-10-01en_US
dc.descriptionPublisher Copyright: © 2016 IEEE.
dc.description.abstractThis paper presents a robust machine learning framework for modeling and control of hydraulic actuators. We identify several important challenges concerning learning accurate models of the dynamics for real machines, including noise and uncertainty in state measurements, nonlinear effects, input delays, and data-efficiency. In particular, we propose a dual-Gaussian process (GP) model architecture to learn a surrogate dynamics model of the actuator, and showcase the accuracy of predictions against the piecewise and neural network models that have been widely used in the literature. In addition, we provide robust techniques for learning neural network inverse models and controllers by batch GP inference in an automated, seamless and computationally fast manner. Finally, we demonstrate the performance of the trained controllers in real-world feedforward and tracking control applications.en
dc.description.versionPeer revieweden
dc.format.extent8
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTaheri, A, Gustafsson, P, Rosth, M, Ghabcheloo, R & Pajarinen, J 2022, 'Nonlinear Model Learning for Compensation and Feedforward Control of Real-World Hydraulic Actuators Using Gaussian Processes', IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9525-9532. https://doi.org/10.1109/LRA.2022.3190808en
dc.identifier.doi10.1109/LRA.2022.3190808en_US
dc.identifier.issn2377-3766
dc.identifier.issn2377-3774
dc.identifier.otherPURE UUID: 4303e013-b9a3-4ae3-9c9c-53e2aa51889aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/4303e013-b9a3-4ae3-9c9c-53e2aa51889aen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85135457299&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/86866385/Nonlinear_Model_Learning_for_Compensation_and_Feedforward_Control_of_Real_World_Hydraulic_Actuators_Using_Gaussian_Processes.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/116078
dc.identifier.urnURN:NBN:fi:aalto-202208174895
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Robotics and Automation Lettersen
dc.relation.ispartofseriesVolume 7, issue 4, pp. 9525-9532en
dc.rightsopenAccessen
dc.subject.keywordHydraulic actuatorsen_US
dc.subject.keywordMachine learning for robot controlen_US
dc.subject.keywordModel learning for controlen_US
dc.titleNonlinear Model Learning for Compensation and Feedforward Control of Real-World Hydraulic Actuators Using Gaussian Processesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files