Bridging the Junction: Electrical Conductivity of Carbon Nanotube Networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorConley, Kevinen_US
dc.contributor.authorKarttunen, Antti J.en_US
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.groupauthorInorganic Materials Modellingen
dc.date.accessioned2022-10-19T06:44:13Z
dc.date.available2022-10-19T06:44:13Z
dc.date.issued2022-10-13en_US
dc.descriptionFunding Information: We acknowledge Business Finland for funding (grant no. 3767/31/2019) and Finnish IT Center for Science (CSC) for computational resources. Publisher Copyright: © 2022 The Authors. Published by American Chemical Society.
dc.description.abstractCarbon nanotube (CNT) films have excellent conductivity and suitable flexibility for chemical sensing and touch screen devices. Understanding the pathways of charge transport within the network is crucial to develop new functional materials and improve existing devices. Here, we study the electrical conductivity of networks of CNTs containing Group 11 metals (Au, Ag, and Cu), s-p metals (K, Ca, and Al), AuCl3, AuCl4, and Cl using quantum mechanical methods and semiclassical Boltzmann transport theory. The conductivity is characterized along the nanotubes and across the intersecting junction. The conductivity is much weaker across the junction than along the nanotubes and could be strengthened in all directions using dopants. The largest increase in conductivity is induced by Al along the nanotubes and by Cu across the intersection [389-fold and 14-fold relative to the pristine (8,0) network, respectively]. Additionally, Ag dopants activate charge transport along the semiconducting nanotube in heterogeneous networks of mixed metal and semiconducting nanotubes. The conductivity along the semiconducting nanotube increased 781-fold. This activation removes the bottleneck of charge transport along the semiconducting nanotubes within the network of mixed chiralities. Small amounts of dopants within nanotube networks drastically change the directional conductivity and provide new pathways for charge transport for applications such as chemical sensing or touch screens.en
dc.description.versionPeer revieweden
dc.format.extent17266–17274
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationConley, K & Karttunen, A J 2022, ' Bridging the Junction: Electrical Conductivity of Carbon Nanotube Networks ', Journal of Physical Chemistry C, vol. 126, no. 40, pp. 17266–17274 . https://doi.org/10.1021/acs.jpcc.2c03904en
dc.identifier.doi10.1021/acs.jpcc.2c03904en_US
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.otherPURE UUID: 6f614e3a-bb7a-439f-b728-2034f99f31fcen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6f614e3a-bb7a-439f-b728-2034f99f31fcen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85139421362&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/89621807/CHEM_Conley_and_Karttunen_Bridging_the_Junction_2022_J_Phys_Chem_C.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/117226
dc.identifier.urnURN:NBN:fi:aalto-202210196014
dc.language.isoenen
dc.publisherAMERICAN CHEMICAL SOCIETY
dc.relation.ispartofseriesJournal of Physical Chemistry Cen
dc.relation.ispartofseriesVolume 126, issue 40en
dc.rightsopenAccessen
dc.titleBridging the Junction: Electrical Conductivity of Carbon Nanotube Networksen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files