Bridging the Junction: Electrical Conductivity of Carbon Nanotube Networks

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

Journal of Physical Chemistry C, Volume 126, issue 40, pp. 17266–17274

Abstract

Carbon nanotube (CNT) films have excellent conductivity and suitable flexibility for chemical sensing and touch screen devices. Understanding the pathways of charge transport within the network is crucial to develop new functional materials and improve existing devices. Here, we study the electrical conductivity of networks of CNTs containing Group 11 metals (Au, Ag, and Cu), s-p metals (K, Ca, and Al), AuCl3, AuCl4, and Cl using quantum mechanical methods and semiclassical Boltzmann transport theory. The conductivity is characterized along the nanotubes and across the intersecting junction. The conductivity is much weaker across the junction than along the nanotubes and could be strengthened in all directions using dopants. The largest increase in conductivity is induced by Al along the nanotubes and by Cu across the intersection [389-fold and 14-fold relative to the pristine (8,0) network, respectively]. Additionally, Ag dopants activate charge transport along the semiconducting nanotube in heterogeneous networks of mixed metal and semiconducting nanotubes. The conductivity along the semiconducting nanotube increased 781-fold. This activation removes the bottleneck of charge transport along the semiconducting nanotubes within the network of mixed chiralities. Small amounts of dopants within nanotube networks drastically change the directional conductivity and provide new pathways for charge transport for applications such as chemical sensing or touch screens.

Description

Funding Information: We acknowledge Business Finland for funding (grant no. 3767/31/2019) and Finnish IT Center for Science (CSC) for computational resources. Publisher Copyright: © 2022 The Authors. Published by American Chemical Society.

Keywords

Other note

Citation

Conley, K & Karttunen, A J 2022, 'Bridging the Junction: Electrical Conductivity of Carbon Nanotube Networks', Journal of Physical Chemistry C, vol. 126, no. 40, pp. 17266–17274. https://doi.org/10.1021/acs.jpcc.2c03904