Material and process engineering for cost-effective silicon technologies

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorTittonen, Ilkka, Prof., Aalto University, Department of Electronics and Nanoengineering, Finland
dc.contributor.advisorVähänissi, Ville, Dr., Aalto University, Department of Electronics and Nanoengineering, Finland
dc.contributor.authorLiu, Zhengjun
dc.contributor.departmentElektroniikan ja nanotekniikan laitosfi
dc.contributor.departmentDepartment of Electronics and Nanoengineeringen
dc.contributor.labElectron Physics Groupen
dc.contributor.schoolSähkötekniikan korkeakoulufi
dc.contributor.schoolSchool of Electrical Engineeringen
dc.contributor.supervisorSavin, Hele, Prof., Aalto University, Department of Electronics and Nanoengineering, Finland
dc.date.accessioned2019-05-08T09:01:22Z
dc.date.available2019-05-08T09:01:22Z
dc.date.defence2019-05-17
dc.date.issued2019
dc.description.abstract Conventionally, in semiconductor industry the device performance has been the main driving force while in photovoltaics the cost has been of utmost importance. This work seeks for the balance between these two approaches. The traditional device performance perspective is covered by developing high-resolution focused ion beam (FIB) patterning processes while the cost perspective is covered by studying the applicability of inexpensive quasi-mono silicon (QM-Si) material. New insights from the opposite perspective are provided by developing boron implantation gettering strategies for high-performance n-type silicon solar cells and by studying the applicability of QM­‑Si beyond photovoltaics. The first challenge that the thesis addresses is related to the low ingot yield caused by impurities present in seed-assisted QM-Si. This work implements the phosphorus diffusion gettering method to recover the scrap QM-Si material. The results show that with this method the minority carrier lifetime in the material can be increased tenfold from 17 µs to 178 µs. Secondly, the thesis reports successful demonstration of boron implantation gettering by which the bulk iron point defect concentration is reduced from 2E14 per cubic centimetre to 1E11 per cubic centimetre. This facilitates further efficiency improvement of advanced n-type solar cells. Next, a novel FIB lithography method is developed for precisely defined nanoscale pattering, both for dark and bright field masks. With the developed method, an aspect ratio of 16:1 is reached with 40 nm diameter silicon nanopillars, demonstrating that the method is capable for producing sub-100 nm resolution high aspect ratio silicon structures. Furthermore, the developed method eliminates the lattice damage and unintentional doping of the substrate. Finally, FIB lithography is applied to patterning of QM-Si. The achieved submicron resolution in a line array suggests that the material has true potential e.g. in microelectromechanical systems (MEMS).en
dc.format.extent62 + app. 40
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-60-8532-6 (electronic)
dc.identifier.isbn978-952-60-8531-9 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/37838
dc.identifier.urnURN:ISBN:978-952-60-8532-6
dc.language.isoenen
dc.opnHeinig, Karl-Heinz, Dr., Helmholtz-Zentrum Dresden-Rossendorf, Germany
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Z. Liu, V. Vähänissi, H.S. Laine, M. Lindeberg, M. Yli-Koski, and H. Savin, Electronic quality improvement of highly defective quasi-mono silicon material by phosphorus diffusion gettering, Adv. Electron. Mater, vol. 3, no. 6, p. 1600435, 2017. Fulltext in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201806183300. DOI: 10.1002/aelm.201600435
dc.relation.haspart[Publication 2]: H. S. Laine, V. Vahanissi, Z. Liu, E. Magana, J. Krugener, A.E. Morishige, K. Salo, B. Lai, H. Savin, and D.P. Fenning, Elucidation of iron gettering mechanisms on boron-implanted silicon solar cells, IEEE J. Photovoltaics, vol. 8, no. 1, pp. 79-88, 2018. DOI: 10.1109/JPHOTOV.2017.2775159
dc.relation.haspart[Publication 3]: Z. Liu, K. Iltanen, N. Chekurov, K. Grigoras, and I. Tittonen, Aluminum oxide mask fabrication by focused ion bean implantation combined with wet etching, Nanotechnology, vol. 24, no. 17, p. 175304, 2013. DOI: 10.1088/0957-4484/24/17/175304
dc.relation.haspart[Publication 4]: Z. Liu, A. Shah, T. Alasaarela, N. Chekurov, H. Savin, and I. Tittonen, Silicon dioxide mask by plasma enhanced atomic layer deposition in focused ion beam lithography, Nanotechnology, vol. 28, no. 8, p. 085303, 2017. DOI: 10.1088/1361-6528/aa5650
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries81/2019
dc.revKivambe, Maulid, Dr., Qatar Environment and Energy Research Institute, Qatar
dc.revLorenz, Katharina, Dr., Instituto Superior Técnico, Portugal
dc.subject.keywordsiliconen
dc.subject.keywordQM-Sien
dc.subject.keywordcost-effectiveen
dc.subject.keywordgetteringen
dc.subject.keywordmicrofabricationen
dc.subject.keywordfocused ion beamen
dc.subject.otherElectrical engineeringen
dc.subject.otherMaterials scienceen
dc.titleMaterial and process engineering for cost-effective silicon technologiesen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2019-06-18_1428
local.aalto.archiveyes
local.aalto.formfolder2019_05_08_klo_11_25
local.aalto.infraOtaNano - Aalto Nanofab / Micronovaen
local.aalto.infraOtaNano - Aalto Nanofab / Micronova

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526085326.pdf
Size:
5.18 MB
Format:
Adobe Portable Document Format