Physical Modeling Using Recurrent Neural Networks with Fast Convolutional Layers

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSchlecht, Sebastianen_US
dc.contributor.authorParker, Julianen_US
dc.contributor.authorSchäfer, Maximilianen_US
dc.contributor.authorRabenstein, Rudolfen_US
dc.contributor.departmentDepartment of Art and Mediaen
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.organizationFriedrich-Alexander University Erlangen-Nürnbergen_US
dc.contributor.organizationNative Instruments GmbHen_US
dc.date.accessioned2022-09-21T06:06:29Z
dc.date.available2022-09-21T06:06:29Z
dc.date.issued2022en_US
dc.description.abstractDiscrete-time modeling of acoustic, mechanical and electrical systems is a prominent topic in the musical signal processing literature. Such models are mostly derived by discretizing a mathematical model, given in terms of ordinary or partial differential equations, using established techniques. Recent work has applied the techniques of machine-learning to construct such models automatically from data for the case of systems which have lumped states described by scalar values, such as electrical circuits. In this work, we examine how similar techniques are able to construct models of systems which have spatially distributed rather than lumped states. We describe several novel recurrent neural network structures, and show how they can be thought of as an extension of modal techniques. As a proof of concept, we generate synthetic data for three physical systems and show that the proposed network structures can be trained with this data to reproduce the behavior of these systems.en
dc.description.versionPeer revieweden
dc.format.extent8
dc.format.extent138-145
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSchlecht, S, Parker, J, Schäfer, M & Rabenstein, R 2022, Physical Modeling Using Recurrent Neural Networks with Fast Convolutional Layers . in Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22) . Proceedings of the International Conference on Digital Audio Effects, DAFx, pp. 138-145, International Conference on Digital Audio Effects, Vienna, Austria, 07/09/2022 . < https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in22_paper_38.pdf >en
dc.identifier.issn2414-6382
dc.identifier.issn2413-6689
dc.identifier.otherPURE UUID: ac882b46-3abd-4b18-bddf-6dc14e2491a2en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/ac882b46-3abd-4b18-bddf-6dc14e2491a2en_US
dc.identifier.otherPURE LINK: https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in22_paper_38.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/88075814/DAFx20in22_paper_38_1_.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/116876
dc.identifier.urnURN:NBN:fi:aalto-202209215674
dc.language.isoenen
dc.relation.ispartofInternational Conference on Digital Audio Effectsen
dc.relation.ispartofseriesProceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22)en
dc.relation.ispartofseriesProceedings of the International Conference on Digital Audio Effectsen
dc.rightsopenAccessen
dc.titlePhysical Modeling Using Recurrent Neural Networks with Fast Convolutional Layersen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files