Adapting Visual Complexity Based on Electrodermal Activity Improves Working Memory Performance in Virtual Reality

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorChiossi, Francesco
dc.contributor.authorTurgut, Yagiz
dc.contributor.authorWelsch, Robin
dc.contributor.authorMayer, Sven
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Welsch Robinen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Human-Computer Interaction and Design (HCID)en
dc.contributor.groupauthorComputer Science - Engineering Psychology (ENGPSYCH)en
dc.contributor.organizationLudwig Maximilian University of Munich
dc.date.accessioned2024-04-24T10:03:56Z
dc.date.available2024-04-24T10:03:56Z
dc.date.issued2023-09-12
dc.descriptionPublisher Copyright: © 2023 ACM.
dc.description.abstractBiocybernetic loops encompass users' state detection and system adaptation based on physiological signals. Current adaptive systems limit the adaptation to task features such as task difficulty or multitasking demands. However, virtual reality allows the manipulation of task-irrelevant elements in the environment. We present a physiologically adaptive system that adjusts the virtual environment based on physiological arousal, i.e., electrodermal activity. We conducted a user study with our adaptive system in social virtual reality to verify improved performance. Here, participants completed an n-back task, and we adapted the visual complexity of the environment by changing the number of non-player characters. Our results show that an adaptive virtual reality can control users' comfort, performance, and workload by adapting the visual complexity based on physiological arousal. Thus, our physiologically adaptive system improves task performance and perceived workload. Finally, we embed our findings in physiological computing and discuss applications in various scenarios.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdf
dc.identifier.citationChiossi, F, Turgut, Y, Welsch, R & Mayer, S 2023, ' Adapting Visual Complexity Based on Electrodermal Activity Improves Working Memory Performance in Virtual Reality ', Proceedings of the ACM on Human-Computer Interaction, vol. 7, no. MHCI, 196 . https://doi.org/10.1145/3604243en
dc.identifier.doi10.1145/3604243
dc.identifier.issn2573-0142
dc.identifier.otherPURE UUID: 791bd260-3433-4d4e-a19b-304964b68a89
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/791bd260-3433-4d4e-a19b-304964b68a89
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85171763162&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: http://10.17605/OSF.IO/AXVFY
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/144155113/SCI_Chiossi_etal_Proc_ACM_Hum_Comput_Interact_2023.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/127596
dc.identifier.urnURN:NBN:fi:aalto-202404243221
dc.language.isoenen
dc.publisherACM
dc.relation.ispartofseriesProceedings of the ACM on Human-Computer Interaction
dc.relation.ispartofseriesVolume 7, issue MHCI
dc.rightsopenAccessen
dc.subject.keywordadaptive systems
dc.subject.keywordelectrodermal activity
dc.subject.keywordphysiological computing
dc.subject.keywordvirtual reality
dc.subject.keywordvisual complexity
dc.subject.keywordworking memory
dc.titleAdapting Visual Complexity Based on Electrodermal Activity Improves Working Memory Performance in Virtual Realityen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files