Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorInani, Heenaen_US
dc.contributor.authorMustonen, Kimmoen_US
dc.contributor.authorMarkevich, Alexanderen_US
dc.contributor.authorDing, Er Xiongen_US
dc.contributor.authorTripathi, Mukeshen_US
dc.contributor.authorHussain, Aqeelen_US
dc.contributor.authorMangler, Clemensen_US
dc.contributor.authorKauppinen, Esko I.en_US
dc.contributor.authorSusi, Tomaen_US
dc.contributor.authorKotakoski, Janien_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorNanoMaterialsen
dc.contributor.organizationUniversity of Viennaen_US
dc.contributor.organizationDepartment of Applied Physicsen_US
dc.date.accessioned2019-06-20T13:15:29Z
dc.date.available2019-06-20T13:15:29Z
dc.date.issued2019-05-23en_US
dc.description| openaire: EC/H2020/756277/EU//ATMEN
dc.description.abstractThe chemical and electrical properties of single-walled carbon nanotubes (SWCNTs) and graphene can be modified by the presence of covalently bound impurities. Although this can be achieved by introducing chemical additives during synthesis, it often hinders growth and leads to limited crystallite size and quality. Here, through the simultaneous formation of vacancies with low-energy argon plasma and the thermal activation of adatom diffusion by laser irradiation, silicon impurities are incorporated into the lattice of both materials. After an exposure of ∼1 ion/nm2, we find Si-substitution densities of 0.15 nm-2 in graphene and 0.05 nm-2 in nanotubes, as revealed by atomically resolved scanning transmission electron microscopy. In good agreement with predictions of Ar irradiation effects in SWCNTs, we find Si incorporated in both mono- and divacancies, with ∼2/3 being of the first type. Controlled inclusion of impurities in the quasi-1D and -2D carbon lattices may prove useful for applications such as gas sensing, and a similar approach might also be used to substitute other elements with migration barriers lower than that of carbon.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.extent13136-13140
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationInani, H, Mustonen, K, Markevich, A, Ding, E X, Tripathi, M, Hussain, A, Mangler, C, Kauppinen, E I, Susi, T & Kotakoski, J 2019, ' Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies ', Journal of Physical Chemistry C, vol. 123, no. 20, pp. 13136-13140 . https://doi.org/10.1021/acs.jpcc.9b01894en
dc.identifier.doi10.1021/acs.jpcc.9b01894en_US
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.otherPURE UUID: 99adab1d-f362-4ff3-b8b8-5deecaf0dc50en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/99adab1d-f362-4ff3-b8b8-5deecaf0dc50en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85066144976&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/34393903/acs.jpcc.9b01894.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/38854
dc.identifier.urnURN:NBN:fi:aalto-201906203920
dc.language.isoenen
dc.publisherAMER CHEMICAL SOC
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/756277/EU//ATMENen_US
dc.relation.ispartofseriesJournal of Physical Chemistry Cen
dc.relation.ispartofseriesVolume 123, issue 20en
dc.rightsopenAccessen
dc.titleSilicon Substitution in Nanotubes and Graphene via Intermittent Vacanciesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files