Evaluation of steels susceptibility to hydrogen embrittlement: A thermal desorption spectroscopy-based approach coupled with artificial neural network

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMalitckii, Evgeniien_US
dc.contributor.authorFangnon, Ericen_US
dc.contributor.authorVilaça, Pedroen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorAdvanced Manufacturing and Materialsen
dc.date.accessioned2020-12-31T08:46:23Z
dc.date.available2020-12-31T08:46:23Z
dc.date.issued2020-12-02en_US
dc.description.abstractA novel approach has been developed for quantitative evaluation of the susceptibility of steels and alloys to hydrogen embrittlement. The approach uses a combination of hydrogen thermal desorption spectroscopy (TDS) analysis with recent advances in machine learning technology to develop a regression artificial neural network (ANN) model predicting hydrogen-induced degradation of mechanical properties of steels. We describe the thermal desorption data processing, artificial neural network architecture development, and the learning process beneficial for the accuracy of the developed artificial neural network model. A data augmentation procedure was proposed to increase the diversity of the input data and improve the generalization of the model. The study of the relationship between thermal desorption spectroscopy data and the mechanical properties of steel evidences a strong correlation of their corresponding parameters. A prototype software application based on the developed model is introduced and is openly available. The developed prototype based on TDS analysis coupled with ANN is shown to be a valuable engineering tool for steel characterization and quantitative prediction of the degradation of steel properties caused by hydrogen.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.extent1-14
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMalitckii, E, Fangnon, E & Vilaça, P 2020, ' Evaluation of steels susceptibility to hydrogen embrittlement : A thermal desorption spectroscopy-based approach coupled with artificial neural network ', Materials, vol. 13, no. 23, 5500, pp. 1-14 . https://doi.org/10.3390/ma13235500en
dc.identifier.doi10.3390/ma13235500en_US
dc.identifier.issn1996-1944
dc.identifier.otherPURE UUID: ac3a36b1-9d25-4ef2-aa21-418242015d45en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/ac3a36b1-9d25-4ef2-aa21-418242015d45en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85097020517&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/54037490/ENG_Malitckii_et_al_Evaluation_of_Steels_Susceptibility_Materials.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/101586
dc.identifier.urnURN:NBN:fi:aalto-2020123160407
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesMaterialsen
dc.relation.ispartofseriesVolume 13, issue 23en
dc.rightsopenAccessen
dc.subject.keywordArtificial neural networken_US
dc.subject.keywordHydrogen embrittlementen_US
dc.subject.keywordHydrogen sensitivityen_US
dc.subject.keywordSteelsen_US
dc.subject.keywordThermal desorption spectroscopyen_US
dc.titleEvaluation of steels susceptibility to hydrogen embrittlement: A thermal desorption spectroscopy-based approach coupled with artificial neural networken
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files