Evaluation of steels susceptibility to hydrogen embrittlement: A thermal desorption spectroscopy-based approach coupled with artificial neural network

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2020-12-02
Major/Subject
Mcode
Degree programme
Language
en
Pages
14
1-14
Series
Materials, Volume 13, issue 23
Abstract
A novel approach has been developed for quantitative evaluation of the susceptibility of steels and alloys to hydrogen embrittlement. The approach uses a combination of hydrogen thermal desorption spectroscopy (TDS) analysis with recent advances in machine learning technology to develop a regression artificial neural network (ANN) model predicting hydrogen-induced degradation of mechanical properties of steels. We describe the thermal desorption data processing, artificial neural network architecture development, and the learning process beneficial for the accuracy of the developed artificial neural network model. A data augmentation procedure was proposed to increase the diversity of the input data and improve the generalization of the model. The study of the relationship between thermal desorption spectroscopy data and the mechanical properties of steel evidences a strong correlation of their corresponding parameters. A prototype software application based on the developed model is introduced and is openly available. The developed prototype based on TDS analysis coupled with ANN is shown to be a valuable engineering tool for steel characterization and quantitative prediction of the degradation of steel properties caused by hydrogen.
Description
Keywords
Artificial neural network, Hydrogen embrittlement, Hydrogen sensitivity, Steels, Thermal desorption spectroscopy
Other note
Citation
Malitckii, E, Fangnon, E & Vilaça, P 2020, ' Evaluation of steels susceptibility to hydrogen embrittlement : A thermal desorption spectroscopy-based approach coupled with artificial neural network ', Materials, vol. 13, no. 23, 5500, pp. 1-14 . https://doi.org/10.3390/ma13235500