Instance-Aware Semantic Segmentation of Road Furniture in Mobile Laser Scanning Data

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLi, Fashuai
dc.contributor.authorZhou, Zhize
dc.contributor.authorXiao, Jianhua
dc.contributor.authorChen, Ruizhi
dc.contributor.authorLehtomäki, Matti
dc.contributor.authorElberink, Sander Oude
dc.contributor.authorVosselman, George
dc.contributor.authorHyyppä, Juha
dc.contributor.authorChen, Yuwei
dc.contributor.authorKukko, Antero
dc.contributor.departmentZhejiang University
dc.contributor.departmentWuhan University
dc.contributor.departmentNational Land Survey of Finland
dc.contributor.departmentUniversity of Twente
dc.contributor.departmentMeMo
dc.contributor.departmentDepartment of Built Environmenten
dc.date.accessioned2022-09-14T05:55:50Z
dc.date.available2022-09-14T05:55:50Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-09-22
dc.date.issued2022-10-01
dc.descriptionPublisher Copyright: IEEE
dc.description.abstractIn this paper, we present an improved framework for the instance-aware semantic segmentation of road furniture in mobile laser scanning data. In our framework, we first detect road furniture from mobile laser scanning point clouds. Then we decompose the detected pieces of road furniture into poles and their attached components, and extract the instance information of the components with different features. Most importantly, we classify the components into different categories by combining a classifier and a probabilistic graphic model named DenseCRF, which is the major contribution of this paper. For the classification of the components using DenseCRF, the unary potentials and the pairwise potentials are first obtained. The unary potentials are obtained from the classifier which takes the instance information of components as the input. The pairwise potentials are calculated considering contextual relations between components. By utilising DenseCRF, the contextual consistency of components is preserved, and the performance is significantly improved compared to our previous work. We collect three datasets to test our framework, and compare the classification performances of six different classifiers with and without DenseCRF. The combination of random forest with DenseCRF outperforms the other methods and achieves high overall accuracies of 83.7%, 96.4% and 95.3% in these three datasets. Experimental results demonstrate that our framework reliably assigns both semantic information and instance information for mobile laser scanning point clouds of road furniture.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.identifier.citationLi , F , Zhou , Z , Xiao , J , Chen , R , Lehtomäki , M , Elberink , S O , Vosselman , G , Hyyppä , J , Chen , Y & Kukko , A 2022 , ' Instance-Aware Semantic Segmentation of Road Furniture in Mobile Laser Scanning Data ' , IEEE Transactions on Intelligent Transportation Systems , vol. 23 , no. 10 , pp. 17516-17529 . https://doi.org/10.1109/TITS.2022.3157611en
dc.identifier.doi10.1109/TITS.2022.3157611
dc.identifier.issn1524-9050
dc.identifier.otherPURE UUID: 819adc2a-f55a-4eeb-9f78-b55526fd0f3f
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/819adc2a-f55a-4eeb-9f78-b55526fd0f3f
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85127082910&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: https://research.utwente.nl/en/publications/instance-aware-semantic-segmentation-of-road-furniture-in-mobile-
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/116780
dc.identifier.urnURN:NBN:fi:aalto-202209145584
dc.language.isoenen
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relation.ispartofseriesIEEE Transactions on Intelligent Transportation Systemsen
dc.rightsopenAccessen
dc.subject.keywordDensely connected conditional random fields
dc.subject.keywordFeature extraction
dc.subject.keywordinstance-aware semantic segmentation
dc.subject.keywordMachine learning
dc.subject.keywordmobile laser scanning point clouds
dc.subject.keywordPoint cloud compression
dc.subject.keywordpole-like road furniture.
dc.subject.keywordRoads
dc.subject.keywordSemantics
dc.subject.keywordShape
dc.subject.keywordThree-dimensional displays
dc.titleInstance-Aware Semantic Segmentation of Road Furniture in Mobile Laser Scanning Dataen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files