Vehicle classification using road side sensors and feature-free data smashing approach

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKleyko, Denisen_US
dc.contributor.authorHostettler, Rolanden_US
dc.contributor.authorLyamin, Nikitaen_US
dc.contributor.authorBirk, Wolfgangen_US
dc.contributor.authorWiklund, Urbanen_US
dc.contributor.authorOsipov, Evgenyen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.organizationLuleå University of Technologyen_US
dc.contributor.organizationHalmstad Universityen_US
dc.contributor.organizationUmeå Universityen_US
dc.date.accessioned2017-10-15T20:38:53Z
dc.date.available2017-10-15T20:38:53Z
dc.date.issued2016-12-22en_US
dc.description.abstractThe main contribution of this paper is a study of the applicability of data smashing -A recently proposed data mining method - for vehicle classification according to the "Nordic system for intelligent classification of vehicles" standard, using measurements of road surface vibrations and magnetic field disturbances caused by passing vehicles. The main advantage of the studied classification approach is that it, in contrast to the most of traditional machine learning algorithms, does not require the extraction of features from raw signals. The proposed classification approach was evaluated on a large dataset consisting of signals from 3074 vehicles. Hence, a good estimate of the actual classification rate was obtained. The performance was compared to the previously reported results on the same problem for logistic regression. Our results show the potential trade-off between classification accuracy and classification method's development efforts could be achieved.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.extent1988-1993
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKleyko, D, Hostettler, R, Lyamin, N, Birk, W, Wiklund, U & Osipov, E 2016, Vehicle classification using road side sensors and feature-free data smashing approach . in 2016 IEEE 19th International Conference on Intelligent Transportation Systems, ITSC 2016 ., 7795877, Proceedings of the IEEE International Conference on Intelligent Transportation Systems, IEEE, pp. 1988-1993, IEEE International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 01/11/2016 . https://doi.org/10.1109/ITSC.2016.7795877en
dc.identifier.doi10.1109/ITSC.2016.7795877en_US
dc.identifier.isbn9781509018895
dc.identifier.issn2153-0017
dc.identifier.otherPURE UUID: 5ee042e3-bfbe-4eaa-acfe-ded88067fb0aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/5ee042e3-bfbe-4eaa-acfe-ded88067fb0aen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85010042316&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/15093335/2016_itsc.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/28200
dc.identifier.urnURN:NBN:fi:aalto-201710157060
dc.language.isoenen
dc.relation.ispartofIEEE International Conference on Intelligent Transportation Systemsen
dc.relation.ispartofseries2016 IEEE 19th International Conference on Intelligent Transportation Systems, ITSC 2016en
dc.relation.ispartofseriesProceedings of the IEEE International Conference on Intelligent Transportation Systemsen
dc.rightsopenAccessen
dc.titleVehicle classification using road side sensors and feature-free data smashing approachen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files