Secure Transmission in Cellular V2X Communications Using Deep Q-Learning

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJameel, Furqanen_US
dc.contributor.authorJaved, Muhammad Awaisen_US
dc.contributor.authorZeadally, Sheralien_US
dc.contributor.authorJantti, Rikuen_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.departmentDepartment of Electronics and Nanoengineeringen
dc.contributor.groupauthorCommunication Engineeringen
dc.contributor.organizationUniversity of Kentuckyen_US
dc.date.accessioned2023-03-22T07:53:57Z
dc.date.available2023-03-22T07:53:57Z
dc.date.issued2022-10-01en_US
dc.descriptionPublisher Copyright: IEEE
dc.description.abstractCellular vehicle-to-everything (V2X) communication is emerging as a feasible and cost-effective solution to support applications such as vehicle platooning, blind spot detection, parking assistance, and traffic management. To support these features, an increasing number of sensors are being deployed along the road in the form of roadside objects. However, despite the hype surrounding cellular V2X networks, the practical realization of such networks is still hampered by under-developed physical security solutions. To solve the issue of wireless link security, we propose a deep Q-learning-based strategy to secure V2X links. Since one of the main responsibilities of the base station (BS) is to manage interference in the network, the link security is ensured without compromising the interference level in the network. The formulated problem considers both the power and interference constraints while maximizing the secrecy rate of the vehicles. Subsequently, we develop the reward function of the deep Q-learning network for performing efficient power allocation. The simulation results obtained demonstrate the effectiveness of our proposed learning approach. The results provided here will provide a strong basis for future research efforts in the domain of vehicular communications.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.extent17167-17176
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJameel, F, Javed, M A, Zeadally, S & Jantti, R 2022, ' Secure Transmission in Cellular V2X Communications Using Deep Q-Learning ', IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 17167-17176 . https://doi.org/10.1109/TITS.2022.3165791en
dc.identifier.doi10.1109/TITS.2022.3165791en_US
dc.identifier.issn1524-9050
dc.identifier.otherPURE UUID: d56b1943-6b8e-4851-accf-687688b92c99en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d56b1943-6b8e-4851-accf-687688b92c99en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85128667595&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/103774505/2022_SecureV2X_T_ITS1.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/120169
dc.identifier.urnURN:NBN:fi:aalto-202303222494
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Intelligent Transportation Systemsen
dc.relation.ispartofseriesVolume 23, issue 10en
dc.rightsopenAccessen
dc.subject.keywordDeep Q-learningen_US
dc.subject.keywordInterferenceen_US
dc.subject.keywordinterference managementen_US
dc.subject.keywordphysical layer securityen_US
dc.subject.keywordQ-learningen_US
dc.subject.keywordResource managementen_US
dc.subject.keywordSecurityen_US
dc.subject.keywordSignal to noise ratioen_US
dc.subject.keywordV2X communications.en_US
dc.subject.keywordVehicle-to-everythingen_US
dc.subject.keywordWireless communicationen_US
dc.titleSecure Transmission in Cellular V2X Communications Using Deep Q-Learningen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files