Microstructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusions

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGu, Chaoen_US
dc.contributor.authorLian, Junheen_US
dc.contributor.authorBao, Yanpingen_US
dc.contributor.authorMünstermann, Sebastianen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorAdvanced Manufacturing and Materialsen
dc.contributor.organizationUniversity of Science and Technology Beijingen_US
dc.contributor.organizationRWTH Aachen Universityen_US
dc.date.accessioned2019-05-06T09:28:27Z
dc.date.available2019-05-06T09:28:27Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2021-02-26en_US
dc.date.issued2019-03-28en_US
dc.description.abstractIn the investigation of fatigue properties of metals, the microstructure-based modelling has shown its powerful applicability in predicting the microcrack initiation as well as the fatigue life. However, proper treatment of the inclusions, which are the major fatigue crack trigger especially for the very high cycle fatigue regime, is still missing. It is emphasised that in addition to the geometrical representation and the basic mechanical properties assignment of the inclusions, the residual stresses developed between the steel matrix and inclusions during the cooling processes due to their distinct thermal expansion coefficients play a non-negligible role in determining the fatigue properties. Therefore, it is aimed, in this study, to propose a microstructure-based modelling approach to account for the effects of residual stresses induced by the rapid cooling process on the fatigue crack initiation behaviour of a martensitic steel, for which the majority of the fatigue crack is formed around the calcium aluminate inclusions in experiments. The entire approach is decomposed into two processes: i) simulation of the cooling process to obtain the residual stress profile around the inclusion and ii) fatigue simulation using a crystal plasticity model including the mapped residual stress profile from the previous step. It is shown that the proposed approach accurately predicts the fatigue crack initiation sites around the inclusions corresponding to the experimental findings, while the modelling approach without the residual stresses fails to predict the correct locations of the crack initiation, revealing the necessity to consider the residual stresses for the future fatigue modelling and assessment.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.extent133-141
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGu, C, Lian, J, Bao, Y & Münstermann, S 2019, ' Microstructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusions ', Materials Science and Engineering A, vol. 751, pp. 133-141 . https://doi.org/10.1016/j.msea.2019.02.058en
dc.identifier.doi10.1016/j.msea.2019.02.058en_US
dc.identifier.issn0921-5093
dc.identifier.otherPURE UUID: fbf814a8-676f-4b75-a8fa-25f42d91fe77en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fbf814a8-676f-4b75-a8fa-25f42d91fe77en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85061062304&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/33281992/ENG_Lian_et_al_Microstructure_based_fatigue_modelling_Materials_Science_and_Engineering.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/37809
dc.identifier.urnURN:NBN:fi:aalto-201905062926
dc.language.isoenen
dc.publisherElsevier Science
dc.relation.ispartofseriesMaterials Science and Engineering Aen
dc.relation.ispartofseriesVolume 751en
dc.rightsopenAccessen
dc.subject.keywordMicrostructure-sensitive modellingen_US
dc.subject.keywordCrystal plasticityen_US
dc.subject.keywordRepresentative volume elementen_US
dc.subject.keywordVery high cycle fatigueen_US
dc.subject.keywordMartensitic steelsen_US
dc.subject.keywordHIGH-CYCLE FATIGUEen_US
dc.subject.keywordCRACK INITIATIONen_US
dc.subject.keywordGRAIN-BOUNDARIESen_US
dc.subject.keywordDISLOCATION DENSITYen_US
dc.subject.keywordSTRAIN HETEROGENEITIESen_US
dc.subject.keywordDAMAGE INITIATIONen_US
dc.subject.keywordALPHA-IRONen_US
dc.subject.keywordPLASTICITYen_US
dc.subject.keywordTEXTUREen_US
dc.subject.keywordSTEELen_US
dc.titleMicrostructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusionsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files