ZnO 1-x Te x highly mismatched alloys beyond the dilute alloy limit: Synthesis and electronic band structure
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2019-04-21
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
Series
Journal of Applied Physics, Volume 125, issue 15
Abstract
We have synthesized ZnO1-xTex highly mismatched alloys (HMAs) with high, up to x = 0.34, Te content using pulsed laser deposition. We have found that the film composition is strongly dependent on the growth temperature and background pressure during growth. Lowering the growth temperature and/or increasing the background Ar or N-2 pressure increases the Te content in the film. When grown in O-2 atmosphere, however, oxidation of the Te species occurred, resulting in much less Te incorporation in the O sublattice. While a lower substrate temperature is needed for the incorporation of more Te in the ZnO1-xTex film, the crystallinity of the film degrades at low growth temperature. X-ray photoemission, soft x-ray absorption, and x-ray emission measurements reveal that the observed drastic narrowing of the optical bandgap with increasing Te content is primarily due to the modification of the valence band. The experimentally observed evolution of the optical properties of ZnO1-xTex HMAs from dilute to mid-composition range (x > 0.3) is analyzed within the framework of a modified band anticrossing model with composition dependent coupling parameters describing the anticrossing interaction between the valence band of the matrix and Te localized states. Electrically, we found that adding Te in ZnO increases the film resistivity. When doped with N, a drastic drop in n from mid-10(19) to 10(15) cm(-3) is observed for ZnO1-xTex with similar to 2%-4% of Te. These electrical behaviors can be understood as the effect of the upward shift of the valence band, which favors the formation of native as well as N acceptors.Description
Keywords
THIN-FILMS, ZNO
Other note
Citation
Ting, M, Yu, K M, Jaquez, M, Sharp, I D, Ye, Y, Segercrantz, N, Greif, R, Mao, S S, Liu, C P & Walukiewicz, W 2019, ' ZnO 1-x Te x highly mismatched alloys beyond the dilute alloy limit : Synthesis and electronic band structure ', Journal of Applied Physics, vol. 125, no. 15, 155702 . https://doi.org/10.1063/1.5088852