Existence and boundary regularity for degenerate phase transitions

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2018-01-01

Major/Subject

Mcode

Degree programme

Language

en

Pages

35
456-490

Series

SIAM Journal on Mathematical Analysis, Volume 50, issue 1

Abstract

We study the Cauchy–Dirichlet problem associated to a phase transition modeled upon the degenerate two-phase Stefan problem. We prove that weak solutions are continuous up to the parabolic boundary and quantify the continuity by deriving a modulus. As a byproduct, these a priori regularity results are used to prove the existence of a so-called physical solution.

Description

Keywords

Boundary modulus of continuity, Degenerate equations, Intrinsic scaling, Stefan problem

Other note

Citation

Baroni, P, Kuusi, T, Lindfors, C & Urbano, J M 2018, ' Existence and boundary regularity for degenerate phase transitions ', SIAM Journal on Mathematical Analysis, vol. 50, no. 1, pp. 456-490 . https://doi.org/10.1137/17M1121585