A Quadtree, a Steiner Spanner, and Approximate Nearest Neighbours in Hyperbolic Space
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-06
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Leibniz International Proceedings in Informatics, LIPIcs ; Volume 293
Abstract
We propose a data structure in d-dimensional hyperbolic space that can be considered a natural counterpart to quadtrees in Euclidean spaces. Based on this data structure we propose a so-called L-order for hyperbolic point sets, which is an extension of the Z-order defined in Euclidean spaces. Using these quadtrees and the L-order we build geometric spanners. Near-linear size (1+ε)-spanners do not exist in hyperbolic spaces, but we create a Steiner spanner that achieves a spanning ratio of 1+ε with O_{d,ε}(n) edges, using a simple construction that can be maintained dynamically. As a corollary we also get a (2+ε)-spanner (in the classical sense) of the same size, where the spanning ratio 2+ε is almost optimal among spanners of subquadratic size. Finally, we show that our Steiner spanner directly provides an elegant solution to the approximate nearest neighbour problem: given a point set P in d-dimensional hyperbolic space we build the data structure in O_{d,ε}(nlog n) time, using O_{d,ε}(n) space. Then for any query point q we can find a point p ∈ P that is at most 1+ε times farther from q than its nearest neighbour in P in O_{d,ε}(log n) time. Moreover, the data structure is dynamic and can handle point insertions and deletions with update time O_{d,ε}(log n). This is the first dynamic nearest neighbour data structure in hyperbolic space with proven efficiency guarantees.Description
Publisher Copyright: © Sándor Kisfaludi-Bak and Geert van Wordragen.
Keywords
dynamic approximate nearest neighbours, hyperbolic geometry, Steiner spanner
Other note
Citation
Kisfaludi-Bak, S & van Wordragen, G 2024, A Quadtree, a Steiner Spanner, and Approximate Nearest Neighbours in Hyperbolic Space . in W Mulzer & J M Phillips (eds), 40th International Symposium on Computational Geometry (SoCG 2024) ., 68, Leibniz International Proceedings in Informatics, LIPIcs, vol. 293, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, International Symposium on Computational Geometry, Athens, Greece, 11/06/2024 . https://doi.org/10.4230/LIPIcs.SoCG.2024.68