Accurate derivation of stem curve and volume using backpack mobile laser scanning
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-03-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
17
246-262
246-262
Series
ISPRS Journal of Photogrammetry and Remote Sensing, Volume 161
Abstract
Forest inventories rely on field plots, the measurement of which is costly and time consuming by manual means. Thus, there is a need to automate plot-level field data collection. Mobile laser scanning has yet to be demonstrated for deriving stem curve and volume from standing trees with sufficient accuracy for supporting forest inventory needs. We tested a new approach based on pulse-based backpack mobile laser scanner (Riegl VUX-1HA) combined with in-house developed SLAM (Simultaneous Localization and Mapping), and a novel post-processing algorithm chain that allows one to extract stem curves from scan-line arcs corresponding to individual standing trees. The post-processing step included, among others, an algorithm for scan-line arc extraction, a stem inclination angle correction and an arc matching algorithm correcting for the drifts that are still present in the stem points after applying the SLAM algorithm. By using the stem curves defined by the detected arcs and tree heights provided by the pulse-based scanner, stem volume estimates for standing trees in easy (n = .40) and medium (n = .37) difficult boreal forest were calculated. In the easy and medium plots, 100% of pine and birch stems were correctly detected. The total RMSE of the extracted stem curves was 1.2 cm (5.1%) and 1.7 cm (6.7%) for the easy and medium plots, respectively. The RMSE were 1.8 m (8.7%) and 1.1 m (4.9%) for the estimated tree heights, and 9.7% and 10.9% for the stem volumes for the easy and medium plots, correspondingly. Thus, our processing chain provided stem volume estimates with a better accuracy than previous methods based on mobile laser scanning data. Importantly, the accuracy of stem volume estimation was comparable to that provided by terrestrial laser scanning approaches in similar forest conditions. To further demonstrate the performance of the proposed method, we compared our results against stem volumes calculated using the standard Finnish allometric volume model, and found that our method provided more accurate volume estimates for the two test sites. The findings are important steps towards future individual-tree-based airborne laser scanning inventories which currently lack cost-efficient and accurate field reference data collection techniques. The tree geometry defined by the stem curve is also an important input parameter for deriving quality-related information from trees. Forest management decision making will benefit from improvements to the efficiency and quality of individual tree reference information.Description
Keywords
Mobile, Mobile laser scanning, SLAM, Stem curve, Stem volume, Tree volume
Other note
Citation
Hyyppä, E, Kukko, A, Kaijaluoto, R, White, J C, Wulder, M A, Pyörälä, J, Liang, X, Yu, X, Wang, Y, Kaartinen, H, Virtanen, J P & Hyyppä, J 2020, ' Accurate derivation of stem curve and volume using backpack mobile laser scanning ', ISPRS Journal of Photogrammetry and Remote Sensing, vol. 161, pp. 246-262 . https://doi.org/10.1016/j.isprsjprs.2020.01.018