Activation Energy of Organic Cation Rotation in CH3NH3PbI3 and CD3NH3PbI3: Quasi-Elastic Neutron Scattering Measurements and First-Principles Analysis Including Nuclear Quantum Effects

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLi, Jingruien_US
dc.contributor.authorBouchard, Mathildeen_US
dc.contributor.authorReiss, Peteren_US
dc.contributor.authorAldakov, Dmitryen_US
dc.contributor.authorPouget, Stéphanieen_US
dc.contributor.authorDemadrille, Renauden_US
dc.contributor.authorAumaitre, Cyrilen_US
dc.contributor.authorFrick, Bernharden_US
dc.contributor.authorDjurado, Daviden_US
dc.contributor.authorRossi, Marianaen_US
dc.contributor.authorRinke, Patricken_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorComputational Electronic Structure Theoryen
dc.contributor.organizationInstitut national de physique nucléaire et de physique des particulesen_US
dc.contributor.organizationInstitut Laue-Langevinen_US
dc.contributor.organizationFritz-Haber-Institut der Max-Planck-Gesellschaften_US
dc.date.accessioned2020-02-12T10:50:02Z
dc.date.available2020-02-12T10:50:02Z
dc.date.issued2018-07-19en_US
dc.description.abstractThe motion of CH3NH3+ cations in the low-temperature phase of the promising photovoltaic material methylammonium lead triiodide (CH3NH3PbI3) is investigated experimentally as well as theoretically, with a particular focus on the activation energy. Inelastic and quasi-elastic neutron scattering measurements reveal an activation energy of ∼48 meV. Through a combination of experiments and first-principles calculations, we attribute this activation energy to the relative rotation of CH3 against an NH3 group that stays bound to the inorganic cage. The inclusion of nuclear quantum effects through path integral molecular dynamics gives an activation energy of ∼42 meV, in good agreement with the neutron scattering experiments. For deuterated samples (CD3NH3PbI3), both theory and experiment observe a higher activation energy for the rotation of CD3 against NH3, which results from the smaller nuclear quantum effects in CD3. The rotation of the NH3 group, which is bound to the inorganic cage via strong hydrogen bonding, is unlikely to occur at low temperatures due to its high energy barrier of ∼120 meV.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.extent3969-3977
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLi, J, Bouchard, M, Reiss, P, Aldakov, D, Pouget, S, Demadrille, R, Aumaitre, C, Frick, B, Djurado, D, Rossi, M & Rinke, P 2018, ' Activation Energy of Organic Cation Rotation in CH 3 NH 3 PbI 3 and CD 3 NH 3 PbI 3 : Quasi-Elastic Neutron Scattering Measurements and First-Principles Analysis Including Nuclear Quantum Effects ', Journal of Physical Chemistry Letters, vol. 9, no. 14, pp. 3969-3977 . https://doi.org/10.1021/acs.jpclett.8b01321en
dc.identifier.doi10.1021/acs.jpclett.8b01321en_US
dc.identifier.issn1948-7185
dc.identifier.otherPURE UUID: a2d0159c-12aa-47b0-b679-55bf6290a45ben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/a2d0159c-12aa-47b0-b679-55bf6290a45ben_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85049528379&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/40880905/jz8b01321.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/43109
dc.identifier.urnURN:NBN:fi:aalto-202002122178
dc.language.isoenen
dc.publisherAMERICAN CHEMICAL SOCIETY
dc.relation.ispartofseriesJournal of Physical Chemistry Lettersen
dc.relation.ispartofseriesVolume 9, issue 14en
dc.rightsopenAccessen
dc.titleActivation Energy of Organic Cation Rotation in CH3NH3PbI3 and CD3NH3PbI3: Quasi-Elastic Neutron Scattering Measurements and First-Principles Analysis Including Nuclear Quantum Effectsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files