Machine-learning accelerated structure search for ligand-protected clusters
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Fang, Lincan | en_US |
dc.contributor.author | Laakso, Jarno | en_US |
dc.contributor.author | Rinke, Patrick | en_US |
dc.contributor.author | Chen, Xi | en_US |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.groupauthor | Computational Electronic Structure Theory | en |
dc.contributor.groupauthor | Computational Soft and Molecular Matter | en |
dc.date.accessioned | 2024-03-20T07:27:14Z | |
dc.date.available | 2024-03-20T07:27:14Z | |
dc.date.embargo | info:eu-repo/date/embargoEnd/2025-03-01 | en_US |
dc.date.issued | 2024-03-07 | en_US |
dc.description | Publisher Copyright: © 2024 Author(s). | |
dc.description.abstract | Finding low-energy structures of ligand-protected clusters is challenging due to the enormous conformational space and the high computational cost of accurate quantum chemical methods for determining the structures and energies of conformers. Here, we adopted and utilized a kernel rigid regression based machine learning method to accelerate the search for low-energy structures of ligand-protected clusters. We chose the Au25(Cys)18 (Cys: cysteine) cluster as a model system to test and demonstrate our method. We found that the low-energy structures of the cluster are characterized by a specific hydrogen bond type in the cysteine. The different configurations of the ligand layer influence the structural and electronic properties of clusters. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 9 | |
dc.identifier.citation | Fang, L, Laakso, J, Rinke, P & Chen, X 2024, ' Machine-learning accelerated structure search for ligand-protected clusters ', Journal of Chemical Physics, vol. 160, no. 9, 094106, pp. 1-9 . https://doi.org/10.1063/5.0180529 | en |
dc.identifier.doi | 10.1063/5.0180529 | en_US |
dc.identifier.issn | 0021-9606 | |
dc.identifier.issn | 1089-7690 | |
dc.identifier.other | PURE UUID: 08d225dc-e7a3-4726-aab4-018b9d5dcee2 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/08d225dc-e7a3-4726-aab4-018b9d5dcee2 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85186364817&partnerID=8YFLogxK | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/127179 | |
dc.identifier.urn | URN:NBN:fi:aalto-202403202816 | |
dc.language.iso | en | en |
dc.publisher | American Institute of Physics | |
dc.relation.ispartofseries | Journal of Chemical Physics | |
dc.relation.ispartofseries | Volume 160, issue 9, pp. 1-9 | |
dc.rights | embargoedAccess | en |
dc.title | Machine-learning accelerated structure search for ligand-protected clusters | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |