Modeling Human Blockage at 5G Millimeter-Wave Frequencies

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2020-03
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
IEEE Transactions on Antennas and Propagation
Abstract
Millimeter-wave (mm-wave) spectrum unravels the humongous and accelerating demand for wireless data rates and, therefore, it will be a fundamental ingredient of the fifthgeneration (5G) wireless technology. In case of mm-wave access links, humans are the most noticeable blockers of electromagnetic waves from access points to mobile stations and hence cause temporal variation in the radio channel. This paper presents human blockage measurements in the anechoic chamber at 15, 28 and 60GHz frequencies employing 15 human subjects of different sizes and weights. An effective three-dimensional human blockage model as a double-truncated and absorbing multiple knife-edge (DTMKE) scheme is also proposed. By calculating diffraction from the DTMKE, the frequency, body orientation and antenna height dependency of the blockage are most accurately reproduced compared to the existing models, such as absorbing double knife-edge model and third generation partnership project (3GPP) human blockage model. The results demonstrate that the losses are proportional to the cross-section of the human body with respect to the radio link. Furthermore, the blockage loss decreases as the height of the transmitting antenna increases.
Description
Keywords
millimeter-wave (mm-wave), fifth-generation (5G), three-dimensional (3D), human blockage
Other note
Citation
Virk, U & Haneda, K 2020, ' Modeling Human Blockage at 5G Millimeter-Wave Frequencies ', IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, 8883197, pp. 2256-2266 . https://doi.org/10.1109/TAP.2019.2948499