Entangled Kernels - Beyond Separability
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Huusari, Riikka | |
dc.contributor.author | Kadri, Hachem | |
dc.contributor.department | Professorship Rousu Juho | |
dc.contributor.department | Aix-Marseille Université | |
dc.contributor.department | Department of Computer Science | en |
dc.date.accessioned | 2021-02-26T07:14:38Z | |
dc.date.available | 2021-02-26T07:14:38Z | |
dc.date.issued | 2021-01 | |
dc.description.abstract | We consider the problem of operator-valued kernel learning and investigate the possibility of going beyond the well-known separable kernels. Borrowing tools and concepts from the field of quantum computing, such as partial trace and entanglement, we propose a new view on operator-valued kernels and define a general family of kernels that encompasses previously known operator-valued kernels, including separable and transformable kernels. Within this framework, we introduce another novel class of operator-valued kernels called entangled kernels that are not separable. We propose an efficient two-step algorithm for this framework, where the entangled kernel is learned based on a novel extension of kernel alignment to operator-valued kernels. We illustrate our algorithm with an application to supervised dimensionality reduction, and demonstrate its effectiveness with both artificial and real data for multi-output regression. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 40 | |
dc.format.extent | 1-40 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Huusari , R & Kadri , H 2021 , ' Entangled Kernels - Beyond Separability ' , Journal of Machine Learning Research , vol. 22 , pp. 1-40 . < https://jmlr.org/papers/v22/19-665.html > | en |
dc.identifier.issn | 1532-4435 | |
dc.identifier.issn | 1533-7928 | |
dc.identifier.other | PURE UUID: b44dda07-6e62-4073-91cb-7c278b2d5123 | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/b44dda07-6e62-4073-91cb-7c278b2d5123 | |
dc.identifier.other | PURE LINK: https://jmlr.org/papers/v22/19-665.html | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/55987841/Huusari_Entangled_Kernels.19_665.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/102812 | |
dc.identifier.urn | URN:NBN:fi:aalto-202102262101 | |
dc.language.iso | en | en |
dc.publisher | MICROTOME PUBL | |
dc.relation.ispartofseries | Journal of Machine Learning Research | en |
dc.relation.ispartofseries | Volume 22 | en |
dc.rights | openAccess | en |
dc.title | Entangled Kernels - Beyond Separability | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |