Entangled Kernels - Beyond Separability

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHuusari, Riikka
dc.contributor.authorKadri, Hachem
dc.contributor.departmentProfessorship Rousu Juho
dc.contributor.departmentAix-Marseille Université
dc.contributor.departmentDepartment of Computer Scienceen
dc.date.accessioned2021-02-26T07:14:38Z
dc.date.available2021-02-26T07:14:38Z
dc.date.issued2021-01
dc.description.abstractWe consider the problem of operator-valued kernel learning and investigate the possibility of going beyond the well-known separable kernels. Borrowing tools and concepts from the field of quantum computing, such as partial trace and entanglement, we propose a new view on operator-valued kernels and define a general family of kernels that encompasses previously known operator-valued kernels, including separable and transformable kernels. Within this framework, we introduce another novel class of operator-valued kernels called entangled kernels that are not separable. We propose an efficient two-step algorithm for this framework, where the entangled kernel is learned based on a novel extension of kernel alignment to operator-valued kernels. We illustrate our algorithm with an application to supervised dimensionality reduction, and demonstrate its effectiveness with both artificial and real data for multi-output regression.en
dc.description.versionPeer revieweden
dc.format.extent40
dc.format.extent1-40
dc.format.mimetypeapplication/pdf
dc.identifier.citationHuusari , R & Kadri , H 2021 , ' Entangled Kernels - Beyond Separability ' , Journal of Machine Learning Research , vol. 22 , pp. 1-40 . < https://jmlr.org/papers/v22/19-665.html >en
dc.identifier.issn1532-4435
dc.identifier.issn1533-7928
dc.identifier.otherPURE UUID: b44dda07-6e62-4073-91cb-7c278b2d5123
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b44dda07-6e62-4073-91cb-7c278b2d5123
dc.identifier.otherPURE LINK: https://jmlr.org/papers/v22/19-665.html
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/55987841/Huusari_Entangled_Kernels.19_665.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/102812
dc.identifier.urnURN:NBN:fi:aalto-202102262101
dc.language.isoenen
dc.publisherMICROTOME PUBL
dc.relation.ispartofseriesJournal of Machine Learning Researchen
dc.relation.ispartofseriesVolume 22en
dc.rightsopenAccessen
dc.titleEntangled Kernels - Beyond Separabilityen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files