Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational study

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2016-12-28

Major/Subject

Mcode

Degree programme

Language

en

Pages

10
20080-20089

Series

Nanoscale, Volume 8, issue 48

Abstract

Record high values of Young's modulus and tensile strength of graphene and BN nanoribbons as well as their chemically active edges make them promising candidates for serving as fillers in metal-based composite materials. Herein, using ab initio and analytical potential calculations we carry out a systematic study of the mechanical properties of nanocomposites constructed by reinforcing an Al matrix with BN and graphene nanoribbons. We consider a simple case of uniform distribution of nanoribbons in an Al matrix under the assumption that such configuration will lead to the maximum enhancement of mechanical characteristics. We estimate the bonding energy and the interfacial critical shear stress at the ribbon/metal interface as functions of ribbon width and show that the introduction of nanoribbons into the metal leads to a substantial increase in the mechanical characteristics of the composite material, as strong covalent bonding between the ribbon edges and Al matrix provides efficient load transfer from the metal to the ribbons. Using the obtained data, we apply the rule of mixtures in order to analytically assess the relationship between the composite strength and concentration of nanoribbons. Finally, we study carbon chains, which can be referred to as the ultimately narrow ribbons, and find that they are not the best fillers due to their weak interaction with the Al matrix. Simulations of the electronic transport properties of the composites with graphene nanoribbons and carbyne chains embedded into Al show that the inclusion of the C phase gives rise to deterioration in the current carrying capacity of the material, but the drop is relatively small, so that the composite material can still transmit current well, if required.

Description

Keywords

Other note

Citation

Kvashnin, D G, Ghorbani-Asl, M, Shtansky, D V, Golberg, D, Krasheninnikov, A V & Sorokin, P B 2016, ' Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons : a computational study ', Nanoscale, vol. 8, no. 48, pp. 20080-20089 . https://doi.org/10.1039/c6nr07206b