Normal-to-Lombard adaptation of speech synthesis using long short-term memory recurrent neural networks
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
Speech Communication, Volume 110, pp. 64-75
Abstract
In this article, three adaptation methods are compared based on how well they change the speaking style of a neural network based text-to-speech (TTS) voice. The speaking style conversion adopted here is from normal to Lombard speech. The selected adaptation methods are: auxiliary features (AF), learning hidden unit contribution (LHUC), and fine-tuning (FT). Furthermore, four state-of-the-art TTS vocoders are compared in the same context. The evaluated vocoders are: GlottHMM, GlottDNN, STRAIGHT, and pulse model in log-domain (PML). Objective and subjective evaluations were conducted to study the performance of both the adaptation methods and the vocoders. In the subjective evaluations, speaking style similarity and speech intelligibility were assessed. In addition to acoustic model adaptation, phoneme durations were also adapted from normal to Lombard with the FT adaptation method. In objective evaluations and speaking style similarity tests, we found that the FT method outperformed the other two adaptation methods. In speech intelligibility tests, we found that there were no significant differences between vocoders although the PML vocoder showed slightly better performance compared to the three other vocoders.Description
Keywords
Other note
Citation
Bollepalli, B, Juvela, L, Airaksinen, M, Valentini-Botinhao, C & Alku, P 2019, 'Normal-to-Lombard adaptation of speech synthesis using long short-term memory recurrent neural networks', Speech Communication, vol. 110, pp. 64-75. https://doi.org/10.1016/j.specom.2019.04.008