Quantized current steps due to the a.c. coherent quantum phase-slip effect
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2022-08-04
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Nature
Abstract
The a.c. Josephson effect predicted in 19621 and observed experimentally in 19632 as quantized ‘voltage steps’ (the Shapiro steps) from photon-assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the a.c. coherent quantum phase slip (CQPS), photon-assisted tunnelling of magnetic fluxes through a superconducting nanowire, is envisaged to reveal itself as quantized ‘current steps’3,4. The basic physical significance of the a.c. CQPS is also complemented by practical importance in future current standards, a missing element for closing the quantum metrology triangle5,6. In 2012, the CQPS was demonstrated as superposition of magnetic flux quanta in superconducting nanowires 7. However, the direct flat current steps in superconductors, the only unavailable basic effect of superconductivity to date, was unattainable due to lack of appropriate materials and challenges in circuit engineering. Here we report the direct observation of the dual Shapiro steps in a superconducting nanowire. The sharp steps are clear up to 26 GHz frequency with current values 8.3 nA and limited by the present set-up bandwidth. The current steps were theoretically predicted in small Josephson junctions 30 years ago5. However, unavoidable broadening in Josephson junctions prevents their direct experimental observation8,9. We solve this problem by placing a thin NbN nanowire in an inductive environment.Description
| openaire: EC/H2020/862660/EU//QUANTUM E-LEAPS Funding Information: This work was supported by European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 862660/QUANTUM E-LEAPS and Engineering and Physical Sciences Research Council (EPSRC) grant no. EP/T004088/1. Publisher Copyright: © 2022, The Author(s), under exclusive licence to Springer Nature Limited.
Keywords
Other note
Citation
Shaikhaidarov, R S, Kim, K H, Dunstan, J W, Antonov, I V, Linzen, S, Ziegler, M, Golubev, D S, Antonov, V N, Il’ichev, E V & Astafiev, O V 2022, ' Quantized current steps due to the a.c. coherent quantum phase-slip effect ', Nature, vol. 608, no. 7921, pp. 45-49 . https://doi.org/10.1038/s41586-022-04947-z