Network traffic classification for data fusion: A survey

No Thumbnail Available

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2021-08

Major/Subject

Mcode

Degree programme

Language

en

Pages

93

Series

Information Fusion

Abstract

Traffic classification groups similar or related traffic data, which is one main stream technique of data fusion in the field of network management and security. With the rapid growth of network users and the emergence of new networking services, network traffic classification has attracted increasing attention. Many new traffic classification techniques have been developed and widely applied. However, the existing literature lacks a thorough survey to summarize, compare and analyze the recent advances of network traffic classification in order to deliver a holistic perspective. This paper carefully reviews existing network traffic classification methods from a new and comprehensive perspective by classifying them into five categories based on representative classification features, i.e., statistics-based classification, correlation-based classification, behavior-based classification, payload-based classification, and port-based classification. A series of criteria are proposed for the purpose of evaluating the performance of existing traffic classification methods. For each specified category, we analyze and discuss the details, advantages and disadvantages of its existing methods, and also present the traffic features commonly used. Summaries of investigation are offered for providing a holistic and specialized view on the state-of-art. For convenience, we also cover a discussion on the mostly used datasets and the traffic features adopted for traffic classification in the review. At the end, we identify a list of open issues and future directions in this research field.

Description

Keywords

Traffic classification, Machine learning, Security management, Data fusion

Other note

Citation

Zhao, J, Jing, X, Yan, Z & Pedrycz, W 2021, ' Network traffic classification for data fusion: A survey ', Information Fusion, vol. 72, pp. 22-47 . https://doi.org/10.1016/j.inffus.2021.02.009