Network traffic classification for data fusion: A survey
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021-08
Major/Subject
Mcode
Degree programme
Language
en
Pages
93
Series
Information Fusion
Abstract
Traffic classification groups similar or related traffic data, which is one main stream technique of data fusion in the field of network management and security. With the rapid growth of network users and the emergence of new networking services, network traffic classification has attracted increasing attention. Many new traffic classification techniques have been developed and widely applied. However, the existing literature lacks a thorough survey to summarize, compare and analyze the recent advances of network traffic classification in order to deliver a holistic perspective. This paper carefully reviews existing network traffic classification methods from a new and comprehensive perspective by classifying them into five categories based on representative classification features, i.e., statistics-based classification, correlation-based classification, behavior-based classification, payload-based classification, and port-based classification. A series of criteria are proposed for the purpose of evaluating the performance of existing traffic classification methods. For each specified category, we analyze and discuss the details, advantages and disadvantages of its existing methods, and also present the traffic features commonly used. Summaries of investigation are offered for providing a holistic and specialized view on the state-of-art. For convenience, we also cover a discussion on the mostly used datasets and the traffic features adopted for traffic classification in the review. At the end, we identify a list of open issues and future directions in this research field.Description
Keywords
Traffic classification, Machine learning, Security management, Data fusion
Other note
Citation
Zhao, J, Jing, X, Yan, Z & Pedrycz, W 2021, ' Network traffic classification for data fusion: A survey ', Information Fusion, vol. 72, pp. 22-47 . https://doi.org/10.1016/j.inffus.2021.02.009