Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJiang, Yueen_US
dc.contributor.authorZhou, Changkongen_US
dc.contributor.authorGarg, Vikasen_US
dc.contributor.authorOulasvirta, Anttien_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorMueller, Florian Floyden_US
dc.contributor.editorKyburz, Pennyen_US
dc.contributor.editorWilliamson, Julie R.en_US
dc.contributor.editorSas, Corinaen_US
dc.contributor.editorWilson, Max L.en_US
dc.contributor.editorToups Dugas, Phoebeen_US
dc.contributor.editorShklovski, Irinaen_US
dc.contributor.groupauthorUser Interfacesen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML)en
dc.contributor.groupauthorProfessorship Garg Vikasen
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.date.accessioned2024-05-22T05:47:21Z
dc.date.available2024-05-22T05:47:21Z
dc.date.issued2024-05-11en_US
dc.description.abstractPresent-day graphical user interfaces (GUIs) exhibit diverse arrangements of text, graphics, and interactive elements such as buttons and menus, but representations of GUIs have not kept up. They do not encapsulate both semantic and visuo-spatial relationships among elements. To seize machine learning’s potential for GUIs more efficiently, Graph4GUI exploits graph neural networks to capture individual elements’ properties and their semantic—visuo-spatial constraints in a layout. The learned representation demonstrated its effectiveness in multiple tasks, especially generating designs in a challenging GUI autocompletion task, which involved predicting the positions of remaining unplaced elements in a partially completed GUI. The new model’s suggestions showed alignment and visual appeal superior to the baseline method and received higher subjective ratings for preference. Furthermore, we demonstrate the practical benefits and efficiency advantages designers perceive when utilizing our model as an autocompletion plug-in.en
dc.description.versionPeer revieweden
dc.format.extent18
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJiang, Y, Zhou, C, Garg, V & Oulasvirta, A 2024, Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces . in F F Mueller, P Kyburz, J R Williamson, C Sas, M L Wilson, P Toups Dugas & I Shklovski (eds), CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems ., 988, ACM, ACM SIGCHI Annual Conference on Human Factors in Computing Systems, Honolulu, Hawaii, United States, 11/05/2024 . https://doi.org/10.1145/3613904.3642822en
dc.identifier.doi10.1145/3613904.3642822en_US
dc.identifier.isbn979-8-4007-0330-0
dc.identifier.otherPURE UUID: 058961dd-5270-494e-96dd-89246efc130den_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/058961dd-5270-494e-96dd-89246efc130den_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85194184338&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/146010496/3613904.3642822.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/127887
dc.identifier.urnURN:NBN:fi:aalto-202405223492
dc.language.isoenen
dc.relation.ispartofCHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
dc.relation.ispartofACM SIGCHI Annual Conference on Human Factors in Computing Systemsen
dc.rightsopenAccessen
dc.subject.keywordUser Interface Representationen_US
dc.subject.keywordConstraint-based Layouten_US
dc.subject.keywordGraphical User Interfaceen_US
dc.subject.keywordGraph Neural Networksen_US
dc.titleGraph4GUI: Graph Neural Networks for Representing Graphical User Interfacesen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files