Asymmetrical coffee rings from cellulose nanocrystals and prospects in art and design
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2019-01-15
Major/Subject
Mcode
Degree programme
Language
en
Pages
16
491-506
491-506
Series
Cellulose, Volume 26, issue 1
Abstract
The iridescence displayed by films made from cellulose nanocrystals (CNCs) has long been the subject of fundamental research. This has expanded our understanding of colloidal self-assembly towards the development of advanced materials. However, the application of such findings is less reported for visual designs that exploit structural color. Aesthetic outputs are already in reach, but requires input from trend setters in the design and art industries. In this realm, the CNC-based iridescence uniquely offers broadband, multi-colored reflections through the “coffee ring” effect, which arises upon evaporation-induced self-assembly (EISA). Although this effect has been thoroughly studied in the context of axisymmetric patterns, complex geometries remain to be evaluated for large-scale implementation. This is central to the present efforts, where EISA of CNC suspensions occurred onto non-circular surfaces. We used orientation-dependent contact angle measurements, profilometry and fixed-light source photography to unveil the effect of asymmetric drying fluxes at sharp angles, between 30° and 90°, on CNC particle deposition and resulting color patterns. We also demonstrate the causality between increased capillary fluxes and deposition with the help of modelling via energy minimization of the suspension volume onto a given surface and using the diffusion equation to obtain the local concentration of water vapor during EISA. Lastly, we study the effect of background reflections as well as light and temperature resistance of CNC-based reflectors, both important for any deployment. The results from this multidisciplinary effort, involving applied design, art and colloid chemistry, point to the excellent prospects of CNC films for the development of structured and chromatic patterns. Graphical abstract: [Figure not available: see fulltext.].Description
Keywords
Art and design, Cellulose nanocrystals, Coffee rings, Color fading, Iridescence, MARANGONI-FLOW, FILMS, SUSPENSIONS, COLOR, DEGRADATION, GLYCOL)
Other note
Citation
Klockars, K W, Yau, N E, Tardy, B L, Majoinen, J, Kämäräinen, T, Miettunen, K, Boutonnet, E, Borghei, M, Beidler, J & Rojas, O J 2019, ' Asymmetrical coffee rings from cellulose nanocrystals and prospects in art and design ', Cellulose, vol. 26, no. 1, pp. 491-506 . https://doi.org/10.1007/s10570-018-2167-7