Vessel Bearing Estimation Using Visible and Thermal Imaging

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGorad, Ajinkyaen_US
dc.contributor.authorHassan, Syeda Sakiraen_US
dc.contributor.authorSärkkä, Simoen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.editorGade, Rikkeen_US
dc.contributor.editorFelsberg, Michaelen_US
dc.contributor.editorKämäräinen, Joni-Kristianen_US
dc.contributor.groupauthorSensor Informatics and Medical Technologyen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.date.accessioned2023-06-30T09:51:16Z
dc.date.available2023-06-30T09:51:16Z
dc.date.issued2023en_US
dc.descriptionFunding Information: We thank European Space Agency (ESA) for funding and Tallink Megastar crew for enabling the measurements onboard the vessel. We also thank Henrik Ramm-Schmidt from Fleetrange, Toni Hammarberg, and Martta-Kaisa Olkkonen from Finnish Geospatial Research Institute (FGI) for aiding in collecting the data from the campaign. Publisher Copyright: © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.description.abstractMaritime awareness and autonomous navigation can be enabled by state-of-the-art deep learning methods, by monitoring and tracking the position of maritime vessels. In our experiment, we acquire ship dataset from Megastar cruise ferry campaigns in Baltic Sea. We detect the nearby vessels using visible and infrared imaging sensors and object detectors You-Only-Look-Once v5 (YOLOv5), and Detectron2 RCNN network and use that information along with DeepSORT method to track the position of the vessel. We obtain the bearing of the vessels detected from both infrared and visible image sequences of ship and fuse them using a Kalman filter (KF) and Rauch-Tung-Striebel (RTS) smoother. We then compare the result to the bearing obtained from the automatic identification system (AIS) of the vessel, and also compare it among object detectors. We obtained a root-mean-square error of 0.17∘ in vessel bearing tracking as compared to AIS.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGorad, A, Hassan, S S & Särkkä, S 2023, Vessel Bearing Estimation Using Visible and Thermal Imaging . in R Gade, M Felsberg & J-K Kämäräinen (eds), Image Analysis - 23rd Scandinavian Conference, SCIA 2023, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13886 LNCS, Springer, pp. 373-381, Scandinavian Conference on Image Analysis, Kittilä, Finland, 18/04/2023 . https://doi.org/10.1007/978-3-031-31438-4_25en
dc.identifier.doi10.1007/978-3-031-31438-4_25en_US
dc.identifier.isbn978-3-031-31437-7
dc.identifier.isbn978-3-031-31438-4
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.otherPURE UUID: 20af69df-3857-4deb-9675-fcfa76df3e92en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/20af69df-3857-4deb-9675-fcfa76df3e92en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85161447263&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/114121409/Vessel_bearing_estimation_using_visible_and_thermal_imaging.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/121973
dc.identifier.urnURN:NBN:fi:aalto-202306304341
dc.language.isoenen
dc.relation.ispartofScandinavian Conference on Image Analysisen
dc.relation.ispartofseriesImage Analysis - 23rd Scandinavian Conference, SCIA 2023, Proceedingsen
dc.relation.ispartofseriespp. 373-381en
dc.relation.ispartofseriesLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; Volume 13886 LNCSen
dc.rightsopenAccessen
dc.subject.keywordBearing estimationen_US
dc.subject.keywordMaritime awarenessen_US
dc.subject.keywordShip detectionen_US
dc.titleVessel Bearing Estimation Using Visible and Thermal Imagingen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files