Almost global problems in the LOCAL model

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBalliu, Alkidaen_US
dc.contributor.authorBrandt, Sebastianen_US
dc.contributor.authorOlivetti, Dennisen_US
dc.contributor.authorSuomela, Jukkaen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Suomela J.en
dc.contributor.organizationSwiss Federal Institute of Technology Zurichen_US
dc.date.accessioned2019-01-14T09:18:19Z
dc.date.available2019-01-14T09:18:19Z
dc.date.issued2018en_US
dc.description.abstractThe landscape of the distributed time complexity is nowadays well-understood for subpolynomial complexities. When we look at deterministic algorithms in the LOCAL model and locally checkable problems (LCLs) in bounded-degree graphs, the following picture emerges: - There are lots of problems with time complexities Theta(log^* n) or Theta(log n). - It is not possible to have a problem with complexity between omega(log^* n) and o(log n). - In general graphs, we can construct LCL problems with infinitely many complexities between omega(log n) and n^{o(1)}. - In trees, problems with such complexities do not exist. However, the high end of the complexity spectrum was left open by prior work. In general graphs there are problems with complexities of the form Theta(n^alpha) for any rational 0 < alpha <=1/2, while for trees only complexities of the form Theta(n^{1/k}) are known. No LCL problem with complexity between omega(sqrt{n}) and o(n) is known, and neither are there results that would show that such problems do not exist. We show that: - In general graphs, we can construct LCL problems with infinitely many complexities between omega(sqrt{n}) and o(n). - In trees, problems with such complexities do not exist. Put otherwise, we show that any LCL with a complexity o(n) can be solved in time O(sqrt{n}) in trees, while the same is not true in general graphs.en
dc.description.versionPeer revieweden
dc.format.extent1-16
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBalliu, A, Brandt, S, Olivetti, D & Suomela, J 2018, Almost global problems in the LOCAL model . in 32nd International Symposium on Distributed Computing (DISC 2018) . vol. 121, 9, Leibniz International Proceedings in Informatics (LIPIcs), vol. 121, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 1-16, International Symposium on Distributed Computing, New Orleans, Louisiana, United States, 15/10/2018 . https://doi.org/10.4230/LIPIcs.DISC.2018.9en
dc.identifier.doi10.4230/LIPIcs.DISC.2018.9en_US
dc.identifier.isbn978-3-95977-092-7
dc.identifier.issn1868-8969
dc.identifier.otherPURE UUID: 01c5b0bc-5dc5-44db-8512-bd694e19c83aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/01c5b0bc-5dc5-44db-8512-bd694e19c83aen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/31023202/LIPIcs_DISC_2018_9_1.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/35896
dc.identifier.urnURN:NBN:fi:aalto-201901141079
dc.language.isoenen
dc.publisherSchloss Dagstuhl--Leibniz-Zentrum für Informatik
dc.relation.ispartofInternational Symposium on Distributed Computingen
dc.relation.ispartofseries32nd International Symposium on Distributed Computing (DISC 2018)en
dc.relation.ispartofseriesLeibniz International Proceedings in Informatics (LIPIcs)en
dc.relation.ispartofseriesVolume 121en
dc.rightsopenAccessen
dc.subject.keywordDistributed complexity theoryDistributed complexity theoryen_US
dc.subject.keywordLocally checkable labellingsen_US
dc.subject.keywordLOCAL modelen_US
dc.titleAlmost global problems in the LOCAL modelen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files