Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Zhao, Zheng | en_US |
dc.contributor.author | Särkkä, Simo | en_US |
dc.contributor.author | Rad, Ali Bahrami | en_US |
dc.contributor.department | Department of Electrical Engineering and Automation | en |
dc.contributor.groupauthor | Sensor Informatics and Medical Technology | en |
dc.date.accessioned | 2020-06-01T06:56:22Z | |
dc.date.available | 2020-06-01T06:56:22Z | |
dc.date.issued | 2020-07-01 | en_US |
dc.description.abstract | In this article, we propose a novel ECG classification framework for atrial fibrillation (AF) detection using spectro-temporal representation (i.e., time varying spectrum) and deep convolutional networks. In the first step we use a Bayesian spectro-temporal representation based on the estimation of time-varying coefficients of Fourier series using Kalman filter and smoother. Next, we derive an alternative model based on a stochastic oscillator differential equation to accelerate the estimation of the spectro-temporal representation in lengthy signals. Finally, after comparative evaluations of different convolutional architectures, we propose an efficient deep convolutional neural network to classify the 2D spectro-temporal ECG data. The ECG spectro-temporal data are classified into four different classes: AF, non-AF normal rhythm (Normal), non-AF abnormal rhythm (Other), and noisy segments (Noisy). The performance of the proposed methods is evaluated and scored with the PhysioNet/Computing in Cardiology (CinC) 2017 dataset. The experimental results show that the proposed method achieves the overall F1 score of 80.2%, which is in line with the state-of-the-art algorithms. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 16 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Zhao, Z, Särkkä, S & Rad, A B 2020, 'Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection', Journal of Signal Processing Systems, vol. 92, pp. 621-636. https://doi.org/10.1007/s11265-020-01531-4 | en |
dc.identifier.doi | 10.1007/s11265-020-01531-4 | en_US |
dc.identifier.issn | 1939-8018 | |
dc.identifier.issn | 1939-8115 | |
dc.identifier.other | PURE UUID: f07b2c2c-5d84-4c30-9310-930f2abcdf73 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/f07b2c2c-5d84-4c30-9310-930f2abcdf73 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85084265100&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/43206710/ELEC_Zhao_etal_Kalman_based_Spectro_Temporal_JSigProSys_2020_finalpublishedversion.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/44569 | |
dc.identifier.urn | URN:NBN:fi:aalto-202006013542 | |
dc.language.iso | en | en |
dc.publisher | Springer | |
dc.relation.ispartofseries | Journal of Signal Processing Systems | en |
dc.relation.ispartofseries | Volume 92, pp. 621-636 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Atrial fibrillation | en_US |
dc.subject.keyword | Deep learning | en_US |
dc.subject.keyword | ECG analysis | en_US |
dc.subject.keyword | Kalman filter | en_US |
dc.subject.keyword | Spectrogram estimation | en_US |
dc.title | Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |