Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZhao, Zhengen_US
dc.contributor.authorSärkkä, Simoen_US
dc.contributor.authorRad, Ali Bahramien_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorSensor Informatics and Medical Technologyen
dc.date.accessioned2020-06-01T06:56:22Z
dc.date.available2020-06-01T06:56:22Z
dc.date.issued2020-07-01en_US
dc.description.abstractIn this article, we propose a novel ECG classification framework for atrial fibrillation (AF) detection using spectro-temporal representation (i.e., time varying spectrum) and deep convolutional networks. In the first step we use a Bayesian spectro-temporal representation based on the estimation of time-varying coefficients of Fourier series using Kalman filter and smoother. Next, we derive an alternative model based on a stochastic oscillator differential equation to accelerate the estimation of the spectro-temporal representation in lengthy signals. Finally, after comparative evaluations of different convolutional architectures, we propose an efficient deep convolutional neural network to classify the 2D spectro-temporal ECG data. The ECG spectro-temporal data are classified into four different classes: AF, non-AF normal rhythm (Normal), non-AF abnormal rhythm (Other), and noisy segments (Noisy). The performance of the proposed methods is evaluated and scored with the PhysioNet/Computing in Cardiology (CinC) 2017 dataset. The experimental results show that the proposed method achieves the overall F1 score of 80.2%, which is in line with the state-of-the-art algorithms.en
dc.description.versionPeer revieweden
dc.format.extent16
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZhao, Z, Särkkä, S & Rad, A B 2020, 'Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection', Journal of Signal Processing Systems, vol. 92, pp. 621-636. https://doi.org/10.1007/s11265-020-01531-4en
dc.identifier.doi10.1007/s11265-020-01531-4en_US
dc.identifier.issn1939-8018
dc.identifier.issn1939-8115
dc.identifier.otherPURE UUID: f07b2c2c-5d84-4c30-9310-930f2abcdf73en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f07b2c2c-5d84-4c30-9310-930f2abcdf73en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85084265100&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/43206710/ELEC_Zhao_etal_Kalman_based_Spectro_Temporal_JSigProSys_2020_finalpublishedversion.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/44569
dc.identifier.urnURN:NBN:fi:aalto-202006013542
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Signal Processing Systemsen
dc.relation.ispartofseriesVolume 92, pp. 621-636en
dc.rightsopenAccessen
dc.subject.keywordAtrial fibrillationen_US
dc.subject.keywordDeep learningen_US
dc.subject.keywordECG analysisen_US
dc.subject.keywordKalman filteren_US
dc.subject.keywordSpectrogram estimationen_US
dc.titleKalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detectionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files