Robust tensor regression with applications in imaging

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorOllila, Esaen_US
dc.contributor.authorKim, Hyon Jungen_US
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.groupauthorEsa Ollila Groupen
dc.date.accessioned2022-11-23T07:59:03Z
dc.date.available2022-11-23T07:59:03Z
dc.date.issued2022en_US
dc.descriptionPublisher Copyright: © 2022 European Signal Processing Conference, EUSIPCO. All rights reserved.
dc.description.abstractTensor regression models have gained popularity in problems where covariates are tensors (multidimensional arrays) such as images. Tensor regression models are able to efficiently exploit the temporal and/or spatial structure of tensor covariates (e.g., in hyperspectral or fMRI images) by imposing a low-rank assumption on the parameter tensor. In this paper, we propose a robust tensor regression estimation method within the framework of Kruskal tensor regression model. We consider Huber's concomitant criterion for regression and scale as it offers a good tradeoff between robustness and computational feasibility. An efficient alternating minimization algorithm is proposed for estimating the unknown regression parameters. Our simulation studies with synthetic image signals illustrate that the proposed estimator performs similarly compared to benchmark method when errors are Gaussians but offers superior performance in heavy-tailed noise, while having similar computational complexity.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.extent887-891
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationOllila, E & Kim, H J 2022, Robust tensor regression with applications in imaging . in 2022 30th European Signal Processing Conference (EUSIPCO) . European Signal Processing Conference, IEEE, pp. 887-891, European Signal Processing Conference, Belgrade, Serbia, 29/08/2022 . < https://eurasip.org/Proceedings/Eusipco/Eusipco2022/pdfs/0000887.pdf >en
dc.identifier.isbn978-1-6654-6799-5
dc.identifier.isbn978-90-827970-9-1
dc.identifier.issn2219-5491
dc.identifier.issn2076-1465
dc.identifier.otherPURE UUID: 11120e54-4f64-44df-85c7-0a42c8e2f0bben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/11120e54-4f64-44df-85c7-0a42c8e2f0bben_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85141010171&partnerID=8YFLogxKen_US
dc.identifier.otherPURE LINK: https://eurasip.org/Proceedings/Eusipco/Eusipco2022/pdfs/0000887.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/92750990/Ollila_et_Kim_Robust_tensor_regression_with_applications_in_pdfa2b.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/117789
dc.identifier.urnURN:NBN:fi:aalto-202211236549
dc.language.isoenen
dc.relation.ispartofEuropean Signal Processing Conferenceen
dc.relation.ispartofseries2022 30th European Signal Processing Conference (EUSIPCO)en
dc.relation.ispartofseriesEuropean Signal Processing Conferenceen
dc.rightsopenAccessen
dc.subject.keywordHuber's criterionen_US
dc.subject.keywordoutliersen_US
dc.subject.keywordPARAFACen_US
dc.subject.keywordrobustnessen_US
dc.subject.keywordtensor regressionen_US
dc.titleRobust tensor regression with applications in imagingen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files