Parallel MCMC Without Embarrassing Failures
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Augusto de Souza, Daniel | en_US |
dc.contributor.author | Parente Paiva Mesquita, Diego | en_US |
dc.contributor.author | Kaski, Samuel | en_US |
dc.contributor.author | Acerbi, Luigi | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) | en |
dc.contributor.groupauthor | Finnish Center for Artificial Intelligence, FCAI | en |
dc.contributor.groupauthor | Probabilistic Machine Learning | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.organization | University College London | en_US |
dc.contributor.organization | University of Helsinki | en_US |
dc.date.accessioned | 2022-10-19T06:43:54Z | |
dc.date.available | 2022-10-19T06:43:54Z | |
dc.date.issued | 2022 | en_US |
dc.description.abstract | Embarrassingly parallel Markov Chain Monte Carlo (MCMC) exploits parallel computing to scale Bayesian inference to large datasets by using a two-step approach. First, MCMC is run in parallel on (sub)posteriors defined on data partitions. Then, a server combines local results. While efficient, this framework is very sensitive to the quality of subposterior sampling. Common sampling problems such as missing modes or misrepresentation of low-density regions are amplified – instead of being corrected – in the combination phase, leading to catastrophic failures. In this work, we propose a novel combination strategy to mitigate this issue. Our strategy, Parallel Active Inference (PAI), leverages Gaussian Process (GP) surrogate modeling and active learning. After fitting GPs to subposteriors, PAI (i) shares information between GP surrogates to cover missing modes; and (ii) uses active sampling to individually refine subposterior approximations. We validate PAI in challenging benchmarks, including heavy-tailed and multi-modal posteriors and a real-world application to computational neuroscience. Empirical results show that PAI succeeds where previous methods catastrophically fail, with a small communication overhead. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 1786-1804 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Augusto de Souza, D, Parente Paiva Mesquita, D, Kaski, S & Acerbi, L 2022, Parallel MCMC Without Embarrassing Failures . in Proceedings of The 25th International Conference on Artificial Intelligence and Statistics . Proceedings of Machine Learning Research, vol. 151, JMLR, pp. 1786-1804, International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 28/03/2022 . < https://proceedings.mlr.press/v151/de-souza22a/de-souza22a.pdf > | en |
dc.identifier.issn | 2640-3498 | |
dc.identifier.other | PURE UUID: 678f0b1c-bd38-4945-ab7a-bd65e95a32f6 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/678f0b1c-bd38-4945-ab7a-bd65e95a32f6 | en_US |
dc.identifier.other | PURE LINK: https://proceedings.mlr.press/v151/de-souza22a/de-souza22a.pdf | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/90940074/SCI_de_Souza_AISTATS_2022.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/117220 | |
dc.identifier.urn | URN:NBN:fi:aalto-202210196008 | |
dc.language.iso | en | en |
dc.publisher | PMLR | |
dc.relation.ispartof | International Conference on Artificial Intelligence and Statistics | en |
dc.relation.ispartofseries | Proceedings of The 25th International Conference on Artificial Intelligence and Statistics | en |
dc.relation.ispartofseries | Proceedings of Machine Learning Research | en |
dc.relation.ispartofseries | Volume 151 | en |
dc.rights | openAccess | en |
dc.title | Parallel MCMC Without Embarrassing Failures | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |