Parallel MCMC Without Embarrassing Failures

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAugusto de Souza, Danielen_US
dc.contributor.authorParente Paiva Mesquita, Diegoen_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.authorAcerbi, Luigien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML)en
dc.contributor.groupauthorFinnish Center for Artificial Intelligence, FCAIen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationUniversity College Londonen_US
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2022-10-19T06:43:54Z
dc.date.available2022-10-19T06:43:54Z
dc.date.issued2022en_US
dc.description.abstractEmbarrassingly parallel Markov Chain Monte Carlo (MCMC) exploits parallel computing to scale Bayesian inference to large datasets by using a two-step approach. First, MCMC is run in parallel on (sub)posteriors defined on data partitions. Then, a server combines local results. While efficient, this framework is very sensitive to the quality of subposterior sampling. Common sampling problems such as missing modes or misrepresentation of low-density regions are amplified – instead of being corrected – in the combination phase, leading to catastrophic failures. In this work, we propose a novel combination strategy to mitigate this issue. Our strategy, Parallel Active Inference (PAI), leverages Gaussian Process (GP) surrogate modeling and active learning. After fitting GPs to subposteriors, PAI (i) shares information between GP surrogates to cover missing modes; and (ii) uses active sampling to individually refine subposterior approximations. We validate PAI in challenging benchmarks, including heavy-tailed and multi-modal posteriors and a real-world application to computational neuroscience. Empirical results show that PAI succeeds where previous methods catastrophically fail, with a small communication overhead.en
dc.description.versionPeer revieweden
dc.format.extent1786-1804
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAugusto de Souza, D, Parente Paiva Mesquita, D, Kaski, S & Acerbi, L 2022, Parallel MCMC Without Embarrassing Failures . in Proceedings of The 25th International Conference on Artificial Intelligence and Statistics . Proceedings of Machine Learning Research, vol. 151, JMLR, pp. 1786-1804, International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 28/03/2022 . < https://proceedings.mlr.press/v151/de-souza22a/de-souza22a.pdf >en
dc.identifier.issn2640-3498
dc.identifier.otherPURE UUID: 678f0b1c-bd38-4945-ab7a-bd65e95a32f6en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/678f0b1c-bd38-4945-ab7a-bd65e95a32f6en_US
dc.identifier.otherPURE LINK: https://proceedings.mlr.press/v151/de-souza22a/de-souza22a.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/90940074/SCI_de_Souza_AISTATS_2022.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/117220
dc.identifier.urnURN:NBN:fi:aalto-202210196008
dc.language.isoenen
dc.publisherPMLR
dc.relation.ispartofInternational Conference on Artificial Intelligence and Statisticsen
dc.relation.ispartofseriesProceedings of The 25th International Conference on Artificial Intelligence and Statisticsen
dc.relation.ispartofseriesProceedings of Machine Learning Researchen
dc.relation.ispartofseriesVolume 151en
dc.rightsopenAccessen
dc.titleParallel MCMC Without Embarrassing Failuresen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files