Evaluation of regression methods for predicting molecule concentrations from voltammetric data

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorLaurila, Tomi
dc.contributor.authorAn, Xing
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.supervisorKoskinen, Jari
dc.date.accessioned2020-12-20T18:10:46Z
dc.date.available2020-12-20T18:10:46Z
dc.date.issued2020
dc.description.abstractThe application of machine learning regression technology to the field of electro- chemical bio-sensing is investigated in this thesis. Experimental data is collected from voltammetry measurements of dopamine and ascorbic acid using tetrahedral amorphous carbon (ta-C) electrodes. Fixed concentrations of dopamine and ascorbic acid in a phosphate buffer solution are measured. And the data is used to train and test in regression algorithms. Feature extraction and dimension reduction is applied to the experimental data as well. The agreement is shown rationally between the actual concentration and the concentration predicted by gradient boosting and support vector machine with polynomial kernel from the experimental results. Cross validation is applied for each models. For the test dataset, the support vector regression algorithm with polynomial kernel achieves R2 score above 0.84. It shows us the potential ability to use machine learning algorithms in the detection and identification of different molecules in the future study.en
dc.format.extent46+8
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/97571
dc.identifier.urnURN:NBN:fi:aalto-2020122056398
dc.language.isoenen
dc.programmeMaster's Programme in ICT Innovationfi
dc.programme.majorData Science( ICT Innovation )fi
dc.programme.mcodeSCI3095fi
dc.subject.keywordmachine learningen
dc.subject.keywordregressionen
dc.subject.keywordelectrochemistryen
dc.subject.keywordbio-monitoringen
dc.titleEvaluation of regression methods for predicting molecule concentrations from voltammetric dataen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.ontasotDiplomityöfi

Files