Distributed Self-triggered Circular Formation Control for Multi-robot Systems

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A4 Artikkeli konferenssijulkaisussa

Date

2020-07

Major/Subject

Mcode

Degree programme

Language

en

Pages

7
4639-4645

Series

Proceedings of the 39th Chinese Control Conference, CCC 2020

Abstract

This paper investigates circular formation control problems for multi-robot systems in the plane via a distributed self-triggered strategy. In scenarios of restricted energies, a distributed self-triggered protocol is designed for controlling multiple robots to converge asymptotically to a prescribed circular orbit around a fixed target. In particular, each robot maintains any desired relative angular distances during its rotation around the target. Besides, no collision among robots is taken place, since the spatial order of robots is preserved throughout the evolution. We prove that when the event-triggered condition is enforced during the whole process, the controllers only update with superior performance. Moreover, Zeno behavior can be ruled out. Numerical simulations demonstrate the feasibility and effectiveness of the theoretical results.

Description

Keywords

Circular Formation, Directed Network, Multi-robot Systems, Self-triggered

Other note

Citation

Xu, P, Wang, X, Tao, J, Xie, G, Xu, M & Zhou, Q 2020, Distributed Self-triggered Circular Formation Control for Multi-robot Systems . in J Fu & J Sun (eds), Proceedings of the 39th Chinese Control Conference, CCC 2020 ., 9188356, IEEE, pp. 4639-4645, Chinese Control Conference, Virtual, Online, 27/07/2020 . https://doi.org/10.23919/CCC50068.2020.9188356