Machine learning and feature selection for drug response prediction in precision oncology applications

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAli, Mehreenen_US
dc.contributor.authorAittokallio, Teroen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2020-01-02T14:04:10Z
dc.date.available2020-01-02T14:04:10Z
dc.date.issued2019-02-07en_US
dc.description.abstractIn-depth modeling of the complex interplay among multiple omics data measured from cancer cell lines or patient tumors is providing new opportunities toward identification of tailored therapies for individual cancer patients. Supervised machine learning algorithms are increasingly being applied to the omics profiles as they enable integrative analyses among the high-dimensional data sets, as well as personalized predictions of therapy responses using multi-omics panels of response-predictive biomarkers identified through feature selection and cross-validation. However, technical variability and frequent missingness in input “big data” require the application of dedicated data preprocessing pipelines that often lead to some loss of information and compressed view of the biological signal. We describe here the state-of-the-art machine learning methods for anti-cancer drug response modeling and prediction and give our perspective on further opportunities to make better use of high-dimensional multi-omics profiles along with knowledge about cancer pathways targeted by anti-cancer compounds when predicting their phenotypic responses.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.extent31-39
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAli, M & Aittokallio, T 2019, ' Machine learning and feature selection for drug response prediction in precision oncology applications ', Biophysical Reviews, vol. 11, no. 1, pp. 31-39 . https://doi.org/10.1007/s12551-018-0446-zen
dc.identifier.doi10.1007/s12551-018-0446-zen_US
dc.identifier.issn1867-2450
dc.identifier.issn1867-2469
dc.identifier.otherPURE UUID: 8fe48da6-ab7e-4efa-ad03-10d7b83d1894en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8fe48da6-ab7e-4efa-ad03-10d7b83d1894en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85061831079&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/39587198/Ali_Aittokallio2019_Article_MachineLearningAndFeatureSelec.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42128
dc.identifier.urnURN:NBN:fi:aalto-202001021239
dc.language.isoenen
dc.relation.ispartofseriesBiophysical Reviewsen
dc.relation.ispartofseriesVolume 11, issue 1en
dc.rightsopenAccessen
dc.subject.keywordDrug response predictionen_US
dc.subject.keywordFeature selectionen_US
dc.subject.keywordMulti-view regressionen_US
dc.subject.keywordOmics profilingen_US
dc.subject.keywordPrecision oncologyen_US
dc.subject.keywordPredictive biomarkersen_US
dc.titleMachine learning and feature selection for drug response prediction in precision oncology applicationsen
dc.typeA2 Katsausartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files