On the hyperprior choice for the global shrinkage parameter in the horseshoe prior

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPiironen, Juhoen_US
dc.contributor.authorVehtari, Akien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.groupauthorProfessorship Vehtari Akien
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.date.accessioned2019-06-03T14:18:05Z
dc.date.available2019-06-03T14:18:05Z
dc.date.issued2017en_US
dc.description.abstractThe horseshoe prior has proven to be a noteworthy alternative for sparse Bayesian estimation, but as shown in this paper, the results can be sensitive to the prior choice for the global shrinkage hyperparameter. We argue that the previous default choices are dubious due to their tendency to favor solutions with more unshrunk coefficients than we typically expect a priori. This can lead to bad results if this parameter is not strongly identified by data. We derive the relationship between the global parameter and the effective number of nonzeros in the coefficient vector, and show an easy and intuitive way of setting up the prior for the global parameter based on our prior beliefs about the number of nonzero coefficients in the model. The results on real world data show that one can benefit greatly – in terms of improved parameter estimates, prediction accuracy, and reduced computation time – from transforming even a crude guess for the number of nonzero coefficients into the prior for the global parameter using our framework.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationPiironen, J & Vehtari, A 2017, On the hyperprior choice for the global shrinkage parameter in the horseshoe prior . in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics . Proceedings of Machine Learning Research, vol. 54, JMLR, International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, United States, 20/04/2017 . < http://proceedings.mlr.press/v54/piironen17a.html >en
dc.identifier.issn1938-7228
dc.identifier.otherPURE UUID: c62daffb-bc30-4d48-b17d-fc3eea319d31en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c62daffb-bc30-4d48-b17d-fc3eea319d31en_US
dc.identifier.otherPURE LINK: http://proceedings.mlr.press/v54/piironen17a.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/33627310/SCI_Piironen_Vehtari_On_the_Hyperprior_Choice.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/38364
dc.identifier.urnURN:NBN:fi:aalto-201906033449
dc.language.isoenen
dc.publisherPMLR
dc.relation.ispartofInternational Conference on Artificial Intelligence and Statisticsen
dc.relation.ispartofseriesProceedings of the 20th International Conference on Artificial Intelligence and Statisticsen
dc.relation.ispartofseriesProceedings of Machine Learning Researchen
dc.relation.ispartofseriesVolume 54en
dc.rightsopenAccessen
dc.titleOn the hyperprior choice for the global shrinkage parameter in the horseshoe prioren
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files