The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical‐based analysis
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Monticeli, Francisco M. | en_US |
dc.contributor.author | Almeida Jr, Humberto | en_US |
dc.contributor.author | Neves, Roberta M. | en_US |
dc.contributor.author | Ornaghi Jr, Heitor | en_US |
dc.contributor.author | Trochu, François | en_US |
dc.contributor.department | Department of Energy and Mechanical Engineering | en |
dc.contributor.groupauthor | Solid Mechanics | en |
dc.contributor.organization | Universidade Estadual Paulista | en_US |
dc.contributor.organization | Federal University of Rio Grande do Sul | en_US |
dc.contributor.organization | Federal University for Latin American Integration (UNILA) | en_US |
dc.contributor.organization | Polytechnique Montreal | en_US |
dc.date.accessioned | 2022-03-15T12:37:43Z | |
dc.date.available | 2022-03-15T12:37:43Z | |
dc.date.embargo | info:eu-repo/date/embargoEnd/2023-03-05 | en_US |
dc.date.issued | 2022-05 | en_US |
dc.description.abstract | This work proposes an approach combining artificial neural networks (ANN) with statistical models to predict injection processing conditions for four reinforcement architectures: plain weave, bidirectional noncrimp fabrics, unidirectional fabrics (Uni) and random fiber mats (Random). Key results allow evaluating the velocity of the flow front by combining processing parameters and creating a three-dimensional response surface based on a properly trained ANN. This investigation is based on a large number of experimental results. The key role played by some physical parameters was associated with predicting the impregnation behavior (velocity of the flow front) during resin injection. The main outcome aims to provide a better control of void content in terms of size and position to the four fibrous reinforcements considered. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 1-12 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Monticeli, F M, Almeida Jr, H, Neves, R M, Ornaghi Jr, H & Trochu, F 2022, ' The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical‐based analysis ', Polymer Composites, vol. 43, no. 5, pp. 2812-2823 . https://doi.org/10.1002/pc.26578 | en |
dc.identifier.doi | 10.1002/pc.26578 | en_US |
dc.identifier.issn | 0272-8397 | |
dc.identifier.other | PURE UUID: 9ae7f77b-a5fb-43a5-8776-6fcddac25cd5 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/9ae7f77b-a5fb-43a5-8776-6fcddac25cd5 | en_US |
dc.identifier.other | PURE LINK: https://doi.org/10.1002/pc.26578 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85125595013&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/80624893/ENG_Monticeli_et_al_the_influence_of_fabric_architecture_Polymer_Composites.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/113354 | |
dc.identifier.urn | URN:NBN:fi:aalto-202203152233 | |
dc.language.iso | en | en |
dc.publisher | WILEY-BLACKWELL | |
dc.relation.ispartofseries | Polymer Composites | en |
dc.rights | openAccess | en |
dc.subject.keyword | artificial neural network | en_US |
dc.subject.keyword | permeability | en_US |
dc.subject.keyword | resin transfer molding process | en_US |
dc.subject.keyword | void formation | en_US |
dc.title | The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical‐based analysis | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |