The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical‐based analysis

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMonticeli, Francisco M.en_US
dc.contributor.authorAlmeida Jr, Humbertoen_US
dc.contributor.authorNeves, Roberta M.en_US
dc.contributor.authorOrnaghi Jr, Heitoren_US
dc.contributor.authorTrochu, Françoisen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorSolid Mechanicsen
dc.contributor.organizationUniversidade Estadual Paulistaen_US
dc.contributor.organizationFederal University of Rio Grande do Sulen_US
dc.contributor.organizationFederal University for Latin American Integration (UNILA)en_US
dc.contributor.organizationPolytechnique Montrealen_US
dc.date.accessioned2022-03-15T12:37:43Z
dc.date.available2022-03-15T12:37:43Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2023-03-05en_US
dc.date.issued2022-05en_US
dc.description.abstractThis work proposes an approach combining artificial neural networks (ANN) with statistical models to predict injection processing conditions for four reinforcement architectures: plain weave, bidirectional noncrimp fabrics, unidirectional fabrics (Uni) and random fiber mats (Random). Key results allow evaluating the velocity of the flow front by combining processing parameters and creating a three-dimensional response surface based on a properly trained ANN. This investigation is based on a large number of experimental results. The key role played by some physical parameters was associated with predicting the impregnation behavior (velocity of the flow front) during resin injection. The main outcome aims to provide a better control of void content in terms of size and position to the four fibrous reinforcements considered.en
dc.description.versionPeer revieweden
dc.format.extent1-12
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMonticeli, F M, Almeida Jr, H, Neves, R M, Ornaghi Jr, H & Trochu, F 2022, ' The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical‐based analysis ', Polymer Composites, vol. 43, no. 5, pp. 2812-2823 . https://doi.org/10.1002/pc.26578en
dc.identifier.doi10.1002/pc.26578en_US
dc.identifier.issn0272-8397
dc.identifier.otherPURE UUID: 9ae7f77b-a5fb-43a5-8776-6fcddac25cd5en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9ae7f77b-a5fb-43a5-8776-6fcddac25cd5en_US
dc.identifier.otherPURE LINK: https://doi.org/10.1002/pc.26578en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85125595013&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/80624893/ENG_Monticeli_et_al_the_influence_of_fabric_architecture_Polymer_Composites.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/113354
dc.identifier.urnURN:NBN:fi:aalto-202203152233
dc.language.isoenen
dc.publisherWILEY-BLACKWELL
dc.relation.ispartofseriesPolymer Compositesen
dc.rightsopenAccessen
dc.subject.keywordartificial neural networken_US
dc.subject.keywordpermeabilityen_US
dc.subject.keywordresin transfer molding processen_US
dc.subject.keywordvoid formationen_US
dc.titleThe influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical‐based analysisen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files